Suppr超能文献

相似文献

1
Method for predicting RNA secondary structure.
Proc Natl Acad Sci U S A. 1975 Jun;72(6):2017-21. doi: 10.1073/pnas.72.6.2017.
2
Computer method for predicting the secondary structure of single-stranded RNA.
Nucleic Acids Res. 1978 Sep;5(9):3365-87. doi: 10.1093/nar/5.9.3365.
3
Fast algorithm for predicting the secondary structure of single-stranded RNA.
Proc Natl Acad Sci U S A. 1980 Nov;77(11):6309-13. doi: 10.1073/pnas.77.11.6309.
4
Prediction of RNA secondary structure, including pseudoknotting, by computer simulation.
Nucleic Acids Res. 1990 May 25;18(10):3035-44. doi: 10.1093/nar/18.10.3035.
5
A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation.
Nucleic Acids Res. 2006;34(17):4912-24. doi: 10.1093/nar/gkl472. Epub 2006 Sep 18.
6
An energy model that predicts the correct folding of both the tRNA and the 5S RNA molecules.
Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):31-44. doi: 10.1093/nar/12.1part1.31.
10
DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
J Phys Chem B. 2012 Oct 11;116(40):12088-94. doi: 10.1021/jp304260t. Epub 2012 Sep 26.

引用本文的文献

1
A Polymer Physics Framework for the Entropy of Arbitrary Pseudoknots.
Biophys J. 2019 Aug 6;117(3):520-532. doi: 10.1016/j.bpj.2019.06.037. Epub 2019 Jul 10.
2
Challenges and approaches to predicting RNA with multiple functional structures.
RNA. 2018 Dec;24(12):1615-1624. doi: 10.1261/rna.067827.118. Epub 2018 Aug 24.
3
Swellix: a computational tool to explore RNA conformational space.
BMC Bioinformatics. 2017 Nov 21;18(1):504. doi: 10.1186/s12859-017-1910-7.
7
Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures.
PLoS One. 2012;7(12):e52414. doi: 10.1371/journal.pone.0052414. Epub 2012 Dec 27.
8
Frnakenstein: multiple target inverse RNA folding.
BMC Bioinformatics. 2012 Oct 9;13:260. doi: 10.1186/1471-2105-13-260.
10
Evolving stochastic context--free grammars for RNA secondary structure prediction.
BMC Bioinformatics. 2012 May 4;13:78. doi: 10.1186/1471-2105-13-78.

本文引用的文献

1
Some molecular details of the secondary structure of ribonucleic acid.
Nature. 1960 Oct 8;188:98-101. doi: 10.1038/188098a0.
3
Two interconvertible forms of tryptophanyl sRNA in E. coli.
Proc Natl Acad Sci U S A. 1966 Apr;55(4):948-56. doi: 10.1073/pnas.55.4.948.
4
Prediction of RNA secondary structure.
Proc Natl Acad Sci U S A. 1971 Nov;68(11):2682-5. doi: 10.1073/pnas.68.11.2682.
5
Tertiary structure in transfer ribonucleic acids.
Cold Spring Harb Symp Quant Biol. 1966;31:527-37. doi: 10.1101/sqb.1966.031.01.068.
6
Estimation of secondary structure in ribonucleic acids.
Nature. 1971 Apr 9;230(5293):362-7. doi: 10.1038/230362a0.
8
Free energy of imperfect nucleic acid helices. 3. Small internal loops resulting from mismatches.
J Mol Biol. 1973 Aug 5;78(2):301-19. doi: 10.1016/0022-2836(73)90118-6.
9
Free energy of imperfect nucleic acid helices. II. Small hairpin loops.
J Mol Biol. 1973 Feb 5;73(4):497-511. doi: 10.1016/0022-2836(73)90096-x.
10
Stability of RNA hairpin loops: A 6 -C m -U 6 .
J Mol Biol. 1973 Feb 5;73(4):483-96. doi: 10.1016/0022-2836(73)90095-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验