Norris V, Alexandre S, Bouligand Y, Cellier D, Demarty M, Grehan G, Gouesbet G, Guespin J, Insinna E, Le Sceller L, Maheu B, Monnier C, Grant N, Onoda T, Orange N, Oshima A, Picton L, Polaert H, Ripoll C, Thellier M, Valleton J M, Verdus M C, Vincent J C, White G, Wiggins P
IFR 'Systèmes Intégrés', Faculté des Sciences et Techniques, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France.
Biochimie. 1999 Aug-Sep;81(8-9):915-20. doi: 10.1016/s0300-9084(99)00203-5.
A myriad different constituents or elements (genes, proteins, lipids, ions, small molecules etc.) participate in numerous physico-chemical processes to create bacteria that can adapt to their environments to survive, grow and, via the cell cycle, reproduce. We explore the possibility that it is too difficult to explain cell cycle progression in terms of these elements and that an intermediate level of explanation is needed. This level is that of hyperstructures. A hyperstructure is large, has usually one particular function, and contains many elements. Non-equilibrium, or even dissipative, hyperstructures that, for example, assemble to transport and metabolize nutrients may comprise membrane domains of transporters plus cytoplasmic metabolons plus the genes that encode the hyperstructure's enzymes. The processes involved in the putative formation of hyperstructures include: metabolite-induced changes to protein affinities that result in metabolon formation, lipid-organizing forces that result in lateral and transverse asymmetries, post-translational modifications, equilibration of water structures that may alter distributions of other molecules, transertion, ion currents, emission of electromagnetic radiation and long range mechanical vibrations. Equilibrium hyperstructures may also exist such as topological arrays of DNA in the form of cholesteric liquid crystals. We present here the beginning of a picture of the bacterial cell in which hyperstructures form to maximize efficiency and in which the properties of hyperstructures drive the cell cycle.
无数不同的成分或元素(基因、蛋白质、脂质、离子、小分子等)参与众多物理化学过程,从而造就了能够适应环境以生存、生长并通过细胞周期进行繁殖的细菌。我们探讨了一种可能性,即仅依据这些元素来解释细胞周期进程过于困难,因此需要一个中间层次的解释。这个层次就是超结构。超结构体积庞大,通常具有一种特定功能,且包含许多元素。例如,为了运输和代谢营养物质而组装形成的非平衡甚至耗散性超结构,可能包括转运蛋白的膜结构域、细胞质代谢体以及编码超结构中酶的基因。推测的超结构形成过程涉及:代谢物诱导蛋白质亲和力变化从而导致代谢体形成、脂质组织力导致侧向和横向不对称、翻译后修饰、可能改变其他分子分布的水结构平衡、转运插入、离子电流、电磁辐射发射以及长程机械振动。也可能存在平衡超结构,比如以胆甾型液晶形式存在的DNA拓扑阵列。我们在此呈现细菌细胞图景的开端,其中超结构形成以实现效率最大化,且超结构的特性驱动细胞周期。