Strazewski P, Biala E, Gabriel K, McClain W H
Institute of Organic Chemistry, University of Basel, Switzerland.
RNA. 1999 Nov;5(11):1490-4. doi: 10.1017/s1355838299991586.
The G x U pair at the third position in the acceptor helix of Escherichia coli tRNA(Ala) is critical for aminoacylation. The features that allow G x U recognition are likely to include direct interaction of alanyl-tRNA synthetase with distinctive atomic groups and indirect recognition of the structural and stability information encoded in the sequence of G x U and its immediate context. The present work investigates the thermodynamic stability and acceptor activity for a comprehensive set of variant RNAs with substitutions of the G x U pair of E. coli tRNA(Ala). The four RNAs with Watson-Crick substitutions had a lower acceptor activity and a higher stability relative to the G x U RNA. On the other hand, the RNAs with mispair substitutions had a lower stability, but either a higher or a lower acceptor activity. Thus, the entire set of variant RNAs does not exhibit a correlation between thermodynamic stability of the free, unbound tRNA and its acceptor activity. The substantial acceptor activity of tRNAs with particular mispair substitutions may be explained by their ability to assume the conformational preferences of alanyl-tRNA synthetase. Moreover, the G x U pair may provide a point of deformability for the substrate tRNA to adapt to the enzyme's active site.
大肠杆菌tRNA(Ala)受体螺旋第三位的G×U碱基对对于氨酰化至关重要。允许识别G×U的特征可能包括丙氨酰-tRNA合成酶与独特原子基团的直接相互作用,以及对G×U序列及其紧邻序列中编码的结构和稳定性信息的间接识别。本研究调查了一系列用大肠杆菌tRNA(Ala)的G×U碱基对替代物的变体RNA的热力学稳定性和受体活性。与G×U RNA相比,具有沃森-克里克替代的四种RNA具有较低的受体活性和较高的稳定性。另一方面,具有错配替代的RNA稳定性较低,但受体活性要么较高要么较低。因此,整个变体RNA集合在游离、未结合tRNA的热力学稳定性与其受体活性之间未表现出相关性。具有特定错配替代的tRNA的显著受体活性可能是由于它们能够呈现丙氨酰-tRNA合成酶的构象偏好。此外,G×U碱基对可能为底物tRNA提供一个可变形点,以适应酶的活性位点。