Suppr超能文献

酵母钾离子通道Tok1的钾离子依赖性复合门控

K(+)-dependent composite gating of the yeast K(+) channel, Tok1.

作者信息

Loukin S H, Saimi Y

机构信息

Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706 USA.

出版信息

Biophys J. 1999 Dec;77(6):3060-70. doi: 10.1016/S0006-3495(99)77137-7.

Abstract

TOK1 encodes an outwardly rectifying K(+) channel in the plasma membrane of the budding yeast Saccharomyces cerevisiae. It is capable of dwelling in two kinetically distinct impermeable states, a near-instantaneously activating R state and a set of related delayed activating C states (formerly called C(2) and C(1), respectively). Dwell in the R state is dependent on membrane potential and both internal and external K(+) in a manner consistent with the K(+) electrochemical potential being its determinant, where dwell in the C states is dependent on voltage and only external K(+). Whereas activation from the C states showed high temperature dependencies, typical of gating transitions in other Shaker-like channels, activation from the R state had a temperature dependence nearly as low as that of simple ionic diffusion. These findings lead us to conclude that although the C states reflect the activity of an internally oriented channel gate, the R state results from an intrinsic gating property of the channel filter region.

摘要

TOK1在出芽酵母酿酒酵母的质膜中编码一种外向整流钾通道。它能够处于两种动力学上不同的非通透状态,一种是近乎瞬间激活的R状态,以及一组相关的延迟激活C状态(以前分别称为C2和C1)。处于R状态取决于膜电位以及内部和外部的钾离子,其方式与钾离子电化学势作为决定因素一致,而处于C状态则取决于电压且仅取决于外部钾离子。虽然从C状态的激活表现出高温依赖性,这是其他类似摇椅通道门控转变的典型特征,但从R状态的激活具有几乎与简单离子扩散一样低的温度依赖性。这些发现使我们得出结论,虽然C状态反映了内部取向通道门的活性,但R状态是由通道滤器区域的固有门控特性导致的。

相似文献

1
K(+)-dependent composite gating of the yeast K(+) channel, Tok1.
Biophys J. 1999 Dec;77(6):3060-70. doi: 10.1016/S0006-3495(99)77137-7.
2
Random mutagenesis reveals a region important for gating of the yeast K+ channel Ykc1.
EMBO J. 1997 Aug 15;16(16):4817-25. doi: 10.1093/emboj/16.16.4817.
3
Carboxyl tail prevents yeast K(+) channel closure: proposal of an integrated model of TOK1 gating.
Biophys J. 2002 Feb;82(2):781-92. doi: 10.1016/S0006-3495(02)75440-4.
4
Potassium uptake through the TOK1 K+ channel in the budding yeast.
J Membr Biol. 1999 Mar 15;168(2):149-57. doi: 10.1007/s002329900505.
5
S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels.
Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5020-5. doi: 10.1073/pnas.0501051102. Epub 2005 Mar 17.
6
Gating of Shaker K+ channels: I. Ionic and gating currents.
Biophys J. 1994 Apr;66(4):996-1010. doi: 10.1016/S0006-3495(94)80881-1.
9
Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation.
Biophys J. 1994 Apr;66(4):1011-21. doi: 10.1016/S0006-3495(94)80882-3.
10
Mutations in the yeast two pore K+ channel YKC1 identify functional differences between the pore domains.
FEBS Lett. 1999 Sep 24;458(3):285-91. doi: 10.1016/s0014-5793(99)01167-9.

引用本文的文献

1
The Killer Toxin: From Origin to Biomedical Research.
Microorganisms. 2024 Dec 2;12(12):2481. doi: 10.3390/microorganisms12122481.
2
TOK channels use the two gates in classical K channels to achieve outward rectification.
FASEB J. 2020 Jul;34(7):8902-8919. doi: 10.1096/fj.202000545R. Epub 2020 Jun 10.
3
A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels.
Cell. 2016 Feb 25;164(5):937-49. doi: 10.1016/j.cell.2016.02.002.
4
Quantitative description of ion transport via plasma membrane of yeast and small cells.
Front Plant Sci. 2015 Jun 11;6:425. doi: 10.3389/fpls.2015.00425. eCollection 2015.
5
An integrative model of ion regulation in yeast.
PLoS Comput Biol. 2013;9(1):e1002879. doi: 10.1371/journal.pcbi.1002879. Epub 2013 Jan 17.
6
Identification and analysis of cation channel homologues in human pathogenic fungi.
PLoS One. 2012;7(8):e42404. doi: 10.1371/journal.pone.0042404. Epub 2012 Aug 2.
7
Forward genetic analysis reveals multiple gating mechanisms of TRPV4.
J Biol Chem. 2010 Jun 25;285(26):19884-90. doi: 10.1074/jbc.M110.113936. Epub 2010 Apr 27.
8
Ion channels in microbes.
Physiol Rev. 2008 Oct;88(4):1449-90. doi: 10.1152/physrev.00005.2008.
10
In the yeast potassium channel, Tok1p, the external ring of aspartate residues modulates both gating and conductance.
Pflugers Arch. 2005 Nov;451(2):362-70. doi: 10.1007/s00424-005-1418-2. Epub 2005 Aug 27.

本文引用的文献

1
The effect of temperature on the electrical activity of the giant axon of the squid.
J Physiol. 1949 Aug;109(1-2):240-9. doi: 10.1113/jphysiol.1949.sp004388.
3
Macroscopic Na+ currents in the "Nonconducting" Shaker potassium channel mutant W434F.
J Gen Physiol. 1998 Jul;112(1):85-93. doi: 10.1085/jgp.112.1.85.
4
Modulation of C-type inactivation by K+ at the potassium channel selectivity filter.
Biophys J. 1998 Apr;74(4):1840-9. doi: 10.1016/S0006-3495(98)77894-4.
5
The structure of the potassium channel: molecular basis of K+ conduction and selectivity.
Science. 1998 Apr 3;280(5360):69-77. doi: 10.1126/science.280.5360.69.
8
Ion conduction through C-type inactivated Shaker channels.
J Gen Physiol. 1997 Nov;110(5):539-50. doi: 10.1085/jgp.110.5.539.
9
Random mutagenesis reveals a region important for gating of the yeast K+ channel Ykc1.
EMBO J. 1997 Aug 15;16(16):4817-25. doi: 10.1093/emboj/16.16.4817.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验