Suppr超能文献

酵母离子调节的综合模型。

An integrative model of ion regulation in yeast.

机构信息

Department of Mathematics, Imperial College London, London, United Kingdom.

出版信息

PLoS Comput Biol. 2013;9(1):e1002879. doi: 10.1371/journal.pcbi.1002879. Epub 2013 Jan 17.

Abstract

Yeast cells are able to tolerate and adapt to a variety of environmental stresses. An essential aspect of stress adaptation is the regulation of monovalent ion concentrations. Ion regulation determines many fundamental physiological parameters, such as cell volume, membrane potential, and intracellular pH. It is achieved through the concerted activities of multiple cellular components, including ion transporters and signaling molecules, on both short and long time scales. Although each component has been studied in detail previously, it remains unclear how the physiological parameters are maintained and regulated by the concerted action of all components under a diverse range of stress conditions. In this study, we have constructed an integrated mathematical model of ion regulation in Saccharomyces cerevisiae to understand this coordinated adaptation process. Using this model, we first predict that the interaction between phosphorylated Hog1p and Tok1p at the plasma membrane inhibits Tok1p activity and consequently reduces Na(+) influx under NaCl stress. We further characterize the impacts of NaCl, sorbitol, KCl and alkaline pH stresses on the cellular physiology and the differences between the cellular responses to these stresses. We predict that the calcineurin pathway is essential for maintaining a non-toxic level of intracellular Na(+) in the long-term adaptation to NaCl stress, but that its activation is not required for maintaining a low level of Na(+) under other stresses investigated. We provide evidence that, in addition to extrusion of toxic ions, Ena1p plays an important role, in some cases alongside Nha1p, in re-establishing membrane potential after stress perturbation. To conclude, this model serves as a powerful tool for both understanding the complex system-level properties of the highly coordinated adaptation process and generating further hypotheses for experimental investigation.

摘要

酵母细胞能够耐受和适应各种环境压力。适应压力的一个重要方面是调节单价离子浓度。离子调节决定了许多基本的生理参数,如细胞体积、膜电位和细胞内 pH 值。它是通过多种细胞成分的协同活动来实现的,包括离子转运体和信号分子,无论是在短时间还是长时间尺度上。尽管以前已经对每个成分进行了详细的研究,但在各种压力条件下,所有成分的协同作用如何维持和调节这些生理参数仍然不清楚。在这项研究中,我们构建了一个酿酒酵母离子调节的综合数学模型,以了解这种协调适应过程。使用这个模型,我们首先预测,质膜上磷酸化 Hog1p 和 Tok1p 之间的相互作用抑制了 Tok1p 的活性,从而减少了 NaCl 胁迫下的 Na(+)内流。我们进一步描述了 NaCl、山梨醇、KCl 和碱性 pH 胁迫对细胞生理学的影响,以及细胞对这些胁迫的反应之间的差异。我们预测,钙调神经磷酸酶途径对于长期适应 NaCl 胁迫时维持细胞内非毒性 Na(+)水平是必不可少的,但在研究的其他胁迫下,其激活对于维持低水平的 Na(+)并不需要。我们提供的证据表明,除了排出毒性离子外,Ena1p 在某些情况下与 Nha1p 一起,在应激扰动后恢复膜电位方面发挥着重要作用。总之,这个模型不仅为理解高度协调的适应过程的复杂系统级特性提供了一个有力的工具,而且为进一步的实验研究提供了假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1b2/3547829/2c34451b21ae/pcbi.1002879.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验