Feng Y, Davis N G
Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
Mol Cell Biol. 2000 Jan;20(2):563-74. doi: 10.1128/MCB.20.2.563-574.2000.
The two yeast pheromone receptors, the a and alpha-factor receptors, share many functional similarities: both G protein-coupled receptors couple to the same downstream signal transduction pathway, and both receptors undergo feedback regulation involving increased phosphorylation on their C-terminal domains in response to ligand challenge. The present work, which focuses on the signaling mechanism controlling this feedback phosphorylation, indicates one striking difference. While the alpha-factor-induced phosphorylation of the alpha-factor receptor does not require activation of the downstream G protein-directed signaling pathway (B. Zanolari, S. Raths, B. Singer-Kruger, and H. Riezman, Cell 71:755-763, 1992), the a-factor-induced phosphorylation of the a-factor receptor (Ste3p) clearly does. Induced Ste3p phosphorylation was blocked in cells with disruptions of various components of the pheromone response pathway, indicating a requirement of pathway components extending from the G protein down through the mitogen-activated protein kinase (MAPK). Furthermore, Ste3p phosphorylation can be induced in the absence of the a-factor ligand when the signaling pathway is artificially activated, indicating that the liganded receptor is not required as a substrate for induced phosphorylation. While the activation of signaling is critical for the feedback phosphorylation of Ste3p, pheromone-induced gene transcription, one of the major outcomes of pheromone signaling, appears not to be required. This conclusion is indicated by three results. First, ste12Delta cells differ from cells with disruptions of the upstream signaling elements (e.g., ste4Delta, ste20Delta, ste5Delta, ste11Delta, ste7Delta, or fus3Delta kss1Delta cells) in that they clearly retain some capacity for inducing Ste3p phosphorylation. Second, while activated alleles of STE11 and STE12 induce a strong transcriptional response, they fail to induce a-factor receptor phosphorylation. Third, blocking of new pheromone-induced protein synthesis with cycloheximide fails to block phosphorylation. These findings are discussed within the context of a recently proposed model for pheromone signaling (P. M. Pryciak and F. A. Huntress, Genes Dev. 12:2684-2697, 1998): a key step of this model is the activation of the MAPK Fus3p through the G(betagamma)-dependent relocalization of the Ste5p-MAPK cascade to the plasma membrane. Ste3p phosphorylation may involve activated MAPK Fus3p feeding back upon plasma membrane targets.
两种酵母信息素受体,即a因子受体和α因子受体,在功能上有许多相似之处:二者均为G蛋白偶联受体,且偶联至相同的下游信号转导途径,并且两种受体都经历反馈调节,即响应配体刺激时其C末端结构域的磷酸化增加。目前这项专注于控制这种反馈磷酸化的信号传导机制的研究,揭示了一个显著差异。虽然α因子诱导的α因子受体磷酸化并不需要下游G蛋白导向的信号传导途径激活(B. 扎诺拉里、S. 拉茨、B. 辛格 - 克鲁格和H. 里兹曼,《细胞》71:755 - 763, 1992),但a因子诱导的a因子受体(Ste3p)磷酸化显然需要。在信息素反应途径的各种组分被破坏的细胞中,诱导的Ste3p磷酸化被阻断,这表明从G蛋白一直到丝裂原活化蛋白激酶(MAPK)的途径组分是必需的。此外,当信号传导途径被人工激活时,在没有a因子配体的情况下也可诱导Ste3p磷酸化,这表明配体结合的受体并非诱导磷酸化的底物。虽然信号激活对于Ste3p的反馈磷酸化至关重要,但信息素诱导的基因转录作为信息素信号传导的主要结果之一,似乎并非必需。这一结论由三个结果表明。首先,ste12Δ细胞与上游信号元件被破坏的细胞(例如ste4Δ、ste20Δ、ste5Δ、ste11Δ、ste7Δ或fus3Δ kss1Δ细胞)不同,因为它们显然保留了一些诱导Ste3p磷酸化的能力。其次,虽然STE11和STE12的激活等位基因诱导强烈的转录反应,但它们未能诱导a因子受体磷酸化。第三,用放线菌酮阻断新的信息素诱导的蛋白质合成并不能阻断磷酸化。这些发现将在最近提出的信息素信号传导模型(P. M. 普赖恰克和F. A. 亨特雷斯,《基因与发育》12:2684 - 2697, 1998)的背景下进行讨论:该模型的一个关键步骤是通过Ste5p - MAPK级联的G(βγ)依赖性重新定位到质膜来激活MAPK Fus3p。Ste3p磷酸化可能涉及活化的MAPK Fus3p对质膜靶点的反馈作用。