Cajal Y, Svendsen A, Girona V, Patkar S A, Alsina M A
Physical Chemistry Department, School of Pharmacy, University of Barcelona, Avn. Joan XXIII s/n, 08028 Barcelona, Spain.
Biochemistry. 2000 Jan 18;39(2):413-23. doi: 10.1021/bi991927i.
Small unilamelar vesicles of anionic phospholipids (SUV), such as 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG), provide an interface where Thermomyces lanuginosa triglyceride lipase (TlL) binds and adopts a catalytically active conformation for the hydrolysis of substrate partitioned in the interface, such as tributyrin or p-nitrophenylbutyrate, with an increase in catalytic rate of more than 100-fold for the same concentration of substrate [Berg et al. (1998) Biochemistry 37, 6615-6627.]. This interfacial activation is not seen with large unilamelar vesicles (LUV) of the same composition, or with vesicles of zwitterionic phospholipids such as 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine (POPC), independently of the vesicle size. Tryptophan fluorescence experiments show that lipase binds to all those types of vesicles with similar affinity, but it adopts different forms that can be correlated with the enzyme catalytic activity. The spectral change on binding to anionic SUV corresponds to the catalytically active, or "open" form of the enzyme, and it is not modified in the presence of substrate partitioned in the vesicles, as demonstrated with inactive mutants. This indicates that the displacement of the lid characteristic of lipase interfacial activation is induced by the anionic phospholipid interface without blocking the accessibility of the active site to the substrate. Experiments with a mutant containing only Trp89 in the lid show that most of the spectral changes on binding to POPG-SUVs take place in the lid region that covers the active site; an increase in Trp anisotropy indicates that the lid becomes less flexible in the active form, and quenching experiments show that it is significantly buried from the aqueous phase. On the other hand, results with a mutant where Trp89 is changed to Leu show that the environment of the structural tryptophans in positions 117, 221, and 260 is somehow altered on binding, although their mobility and solvent accessibility remains the same as in the inactive form in solution. The form of TlL bound to POPC-SUV or -LUV vesicles as well as to LUV vesicles of POPG has the same spectral signatures and corresponds to an inactive or "closed" form of the enzyme. In these interfaces, the lid is highly flexible, and Trp89 remains accessible to solvent. Resonance energy transfer experiments show that the orientation of TlL in the interface is different in the active and inactive forms. A model of interaction consistent with these data and the available X-ray structures is proposed. This is a unique system where the composition and physical properties of the lipid interface control the enzyme activity.
阴离子磷脂的小单层囊泡(SUV),如1-棕榈酰-2-油酰甘油-sn-3-磷酸甘油(POPG),提供了一个界面,嗜热栖热菌甘油三酯脂肪酶(TlL)在该界面结合并形成催化活性构象,用于水解分配在界面中的底物,如三丁酸甘油酯或对硝基苯丁酸酯,对于相同浓度的底物,催化速率提高了100倍以上[Berg等人(1998年)《生物化学》37卷,6615 - 6627页]。相同组成的大单层囊泡(LUV)或两性离子磷脂囊泡,如1-棕榈酰-2-油酰甘油-sn-3-磷酸胆碱(POPC),无论囊泡大小如何,都不会出现这种界面活化现象。色氨酸荧光实验表明,脂肪酶以相似的亲和力与所有这些类型的囊泡结合,但它会形成不同的形式,这些形式与酶的催化活性相关。与阴离子SUV结合时的光谱变化对应于酶的催化活性或“开放”形式,并且在囊泡中分配的底物存在时不会改变,这已通过无活性突变体得到证明。这表明脂肪酶界面活化特有的盖子位移是由阴离子磷脂界面诱导的,而不会阻碍活性位点对底物的可及性。对仅在盖子中含有Trp89的突变体进行的实验表明,与POPG - SUV结合时的大部分光谱变化发生在覆盖活性位点的盖子区域;色氨酸各向异性的增加表明盖子在活性形式下变得不那么灵活,猝灭实验表明它从水相中被显著掩埋。另一方面,将Trp89突变为Leu的突变体的结果表明,117、221和260位结构色氨酸的环境在结合时以某种方式发生了改变,尽管它们的流动性和溶剂可及性与溶液中的无活性形式相同。与POPC - SUV或 - LUV囊泡以及POPG的LUV囊泡结合的TlL形式具有相同的光谱特征,对应于酶的无活性或“封闭”形式。在这些界面中,盖子非常灵活,Trp89仍然可与溶剂接触。共振能量转移实验表明,TlL在界面中的取向在活性形式和无活性形式中是不同的。提出了一个与这些数据和可用的X射线结构一致的相互作用模型。这是一个独特的系统,其中脂质界面的组成和物理性质控制着酶的活性。