Suppr超能文献

Morphogenesis and release of fowlpox virus.

作者信息

Boulanger D, Smith T, Skinner M A

机构信息

Department of Molecular Biology, Institute for Animal Health, Compton Laboratory, Newbury, Berkshire RG20 7NN, UK.

出版信息

J Gen Virol. 2000 Mar;81(Pt 3):675-87. doi: 10.1099/0022-1317-81-3-675.

Abstract

Release of fowlpox virus (FWPV) as extracellular enveloped virus (EEV) appears to proceed both by the budding of intracellular mature virus (IMV) through the plasma membrane and by the fusion of intracellular enveloped virus (IEV) with the plasma membrane. Based on the frequency of budding events compared to wrapping events observed by electron microscopy, FWPV FP9 strain seems to exit chick embryo fibroblast cells predominantly by budding. In contrast to vaccinia virus (VV), the production of FWPV extracellular virus particles is not affected by N(1)-isonicotinoyl-N(2)-3-methyl-4-chlorobenzoylhydrazine (IMCBH). Comparison of the sequence of the VV F13L gene product with its FWPV orthologue showed a mutation, in the fowlpox protein, at the residue involved in IMCBH resistance in a mutant VV. Glucosamine, monensin or brefeldin A did not have any specific effect on FWPV extracellular virus production. Cytochalasin D, which inhibits the formation of actin filaments, reduces the production of extracellular virus particles by inhibiting the release of cell-associated enveloped virus (CEV) particles from the plasma membrane. Involvement of actin filaments in this mechanism is further supported by the co-localization of actin with viral particles close to the plasma membrane in the absence of cytochalasin D. Actin is also co-localized with virus factories.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验