Grootoonk S, Hutton C, Ashburner J, Howseman A M, Josephs O, Rees G, Friston K J, Turner R
Wellcome Department of Cognitive Neurology, University College London, London, WC1N 3BG, United Kingdom.
Neuroimage. 2000 Jan;11(1):49-57. doi: 10.1006/nimg.1999.0515.
Subject motion in functional magnetic resonance imaging (fMRI) studies can be accurately estimated using realignment algorithms. However, residual changes in signal intensity arising from motion have been identified in the data even after realignment of the image time series. The nature of these artifacts is characterized using simulated displacements of an fMRI image and is attributed to interpolation errors introduced by the resampling inherent within realignment. A correction scheme that uses a periodic function of the estimated displacements to remove interpolation errors from the image time series on a voxel-by-voxel basis is proposed. The artifacts are investigated using a brain phantom to avoid physiological confounds. Small- and large-scale systematic displacements show that the artifacts have the same form as revealed by the simulated displacements. A randomly displaced phantom and a human subject are used to demonstrate that interpolation errors are minimized using the correction.
在功能磁共振成像(fMRI)研究中,使用重排算法可以准确估计受试者的运动。然而,即使在对图像时间序列进行重排之后,数据中仍发现了由运动引起的信号强度残余变化。利用功能磁共振成像图像的模拟位移对这些伪影的性质进行了表征,并将其归因于重排过程中固有的重采样引入的插值误差。提出了一种校正方案,该方案使用估计位移的周期函数,逐体素地从图像时间序列中消除插值误差。使用脑部模型研究这些伪影,以避免生理干扰。小规模和大规模的系统位移表明,这些伪影与模拟位移所揭示的形式相同。使用随机位移的模型和人类受试者来证明,使用该校正可将插值误差最小化。