Kochiyama Takanori, Morita Tomoyo, Okada Tomohisa, Yonekura Yoshiharu, Matsumura Michikazu, Sadato Norihiro
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.
Neuroimage. 2005 Apr 15;25(3):802-14. doi: 10.1016/j.neuroimage.2004.12.027.
Task-related motion is a major source of noise in functional magnetic-resonance imaging (fMRI) time series. The motion effect usually persists even after perfect spatial realignment is achieved. Here, we propose a new method to remove a certain type of task-related motion effect that persists after realignment. The procedure consists of the following: the decomposition of the realigned time-series data into spatially-independent components using independent-component analysis (ICA); the automatic classification and rejection of the ICs of the task-related residual motion effects; and finally, a reconstruction without them. To classify the ICs, we utilized the associated task-related changes in signal intensity and variance. The effectiveness of the method was verified using an fMRI experiment that explicitly included head motion as a main effect. The results indicate that our ICA-based method removed the task-related motion effects more effectively than the conventional voxel-wise regression-based method.
与任务相关的运动是功能磁共振成像(fMRI)时间序列中噪声的主要来源。即使在实现完美的空间重新对齐之后,运动效应通常仍然存在。在此,我们提出一种新方法,以去除重新对齐后仍然存在的某种类型的与任务相关的运动效应。该过程包括以下步骤:使用独立成分分析(ICA)将重新对齐的时间序列数据分解为空间独立的成分;自动分类并剔除与任务相关的残余运动效应的独立成分;最后,在没有这些成分的情况下进行重建。为了对独立成分进行分类,我们利用了与任务相关的信号强度和方差变化。通过一项明确将头部运动作为主要效应纳入的fMRI实验验证了该方法的有效性。结果表明,我们基于ICA的方法比传统的基于体素的回归方法更有效地去除了与任务相关的运动效应。