Suppr超能文献

实现精细尺度功能磁共振成像的关键因素:去除无意空间平滑的来源。

Critical factors in achieving fine-scale functional MRI: Removing sources of inadvertent spatial smoothing.

机构信息

Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.

出版信息

Hum Brain Mapp. 2022 Aug 1;43(11):3311-3331. doi: 10.1002/hbm.25867. Epub 2022 Apr 13.

Abstract

Ultra-high Field (≥7T) functional magnetic resonance imaging (UHF-fMRI) provides opportunities to resolve fine-scale features of functional architecture such as cerebral cortical columns and layers, in vivo. While the nominal resolution of modern fMRI acquisitions may appear to be sufficient to resolve these features, several common data preprocessing steps can introduce unwanted spatial blurring, especially those that require interpolation of the data. These resolution losses can impede the detection of the fine-scale features of interest. To examine quantitatively and systematically the sources of spatial resolution losses occurring during preprocessing, we used synthetic fMRI data and real fMRI data from the human visual cortex-the spatially interdigitated human V2 "thin" and "thick" stripes. The pattern of these cortical columns lies along the cortical surface and thus can be best appreciated using surface-based fMRI analysis. We used this as a testbed for evaluating strategies that can reduce spatial blurring of fMRI data. Our results show that resolution losses can be mitigated at multiple points in preprocessing pathway. We show that unwanted blur is introduced at each step of volume transformation and surface projection, and can be ameliorated by replacing multi-step transformations with equivalent single-step transformations. Surprisingly, the simple approaches of volume upsampling and of cortical mesh refinement also helped to reduce resolution losses caused by interpolation. Volume upsampling also serves to improve motion estimation accuracy, which helps to reduce blur. Moreover, we demonstrate that the level of spatial blurring is nonuniform over the brain-knowledge which is critical for interpreting data in high-resolution fMRI studies. Importantly, our study provides recommendations for reducing unwanted blurring during preprocessing as well as methods that enable quantitative comparisons between preprocessing strategies. These findings highlight several underappreciated sources of a spatial blur. Individually, the factors that contribute to spatial blur may appear to be minor, but in combination, the cumulative effects can hinder the interpretation of fine-scale fMRI and the detectability of these fine-scale features of functional architecture.

摘要

超高场(≥7T)功能磁共振成像(UHF-fMRI)提供了在体内解析功能结构的精细特征的机会,例如大脑皮层柱和层。虽然现代 fMRI 采集的名义分辨率似乎足以解析这些特征,但几个常见的数据预处理步骤可能会引入不必要的空间模糊,特别是那些需要对数据进行插值的步骤。这些分辨率损失可能会阻碍对感兴趣的精细功能结构的检测。为了定量和系统地检查预处理过程中空间分辨率损失的来源,我们使用了合成 fMRI 数据和来自人类视觉皮层的真实 fMRI 数据 - 空间交错的人类 V2“薄”和“厚”条纹。这些皮层柱的模式沿着皮层表面,因此使用基于表面的 fMRI 分析可以最好地理解。我们将其用作评估可以减少 fMRI 数据空间模糊策略的测试平台。我们的结果表明,可以在预处理途径的多个点减轻分辨率损失。我们表明,在体积变换和表面投影的每个步骤中都会引入不需要的模糊,可以通过用等效的单步变换替换多步变换来改善。令人惊讶的是,体积上采样和皮质网格细化的简单方法也有助于减少插值引起的分辨率损失。体积上采样还有助于提高运动估计的准确性,从而有助于减少模糊。此外,我们证明了空间模糊程度在大脑中是不均匀的 - 这对于解释高分辨率 fMRI 研究中的数据至关重要。重要的是,我们的研究为减少预处理过程中的不必要模糊提供了建议,并提供了用于在预处理策略之间进行定量比较的方法。这些发现突出了空间模糊的几个未被充分认识的来源。单独来看,导致空间模糊的因素似乎微不足道,但综合起来,累积效应可能会阻碍对精细 fMRI 的解释以及这些精细功能结构特征的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1f/9248309/0f9619cad1df/HBM-43-3311-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验