Herrero-Jimenez P, Tomita-Mitchell A, Furth E E, Morgenthaler S, Thilly W G
Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, 16-743, 21 Ames St., Cambridge, MA 02139, USA.
Mutat Res. 2000 Jan 17;447(1):73-116. doi: 10.1016/s0027-5107(99)00201-8.
The relationship between the molecular mechanisms of mutagenesis and the actual processes by which most people get cancer is still poorly understood. One missing link is a physiologically based but quantitative model uniting the processes of mutation, cell growth and turnover. Any useful model must also account for human heterogeneity for inherited traits and environmental experiences. Such a coherent algebraic model for the age-specific incidence of cancer has been developing over the past 50 years. This development has been spurred primarily by the efforts of Nordling [N.O. Nordling, A new theory on the cancer-inducing mechanism, Br. J. Cancer 7 (1953) 68-72], Armitage and Doll [P. Armitage, R. Doll, The age distribution of cancer and a multi-stage theory of carcinogenesis, Br. J. Cancer 8 (1) (1954) 1-12; P. Armitage, R. Doll, A two-stage theory of carcinogenesis in relation to the age distribution of human cancer, Br. J. Cancer 9 (2) (1957) 161-169], and Moolgavkar and Knudson [S.H. Moolgavkar, A.G. Knudson Jr., Mutation and cancer: a model for human carcinogenesis. JNCI 66 (6) (1981) 1037-1052], whose work defined two rate-limiting stages identified with initiation and promotion stages in experimental carcinogenesis. Unfinished in these efforts was an accounting of population heterogeneity and a complete description of growth and genetic change during the growth of adenomas. In an attempt to complete a unified model, we present herein the first means to explicitly compute the essential parameters of the two-stage initiation-promotion model using colon cancer as an example. With public records from the 1930s to the present day, we first calculate the fraction at primary risk for each birth year cohort and note historical changes. We then calculate the product of rates for n initiation-mutations, the product of rates for m promotion-mutations and the average growth rate of the intermediate adenomatous colonies from which colon carcinomas arise. We find that the population fraction at primary risk for colon cancer risk was historically invariant at about 42% for the birth year cohorts from 1860 through 1930. This was true for each of the four cohorts we examined (European- and African-Americans of each gender). Additionally, the data indicate an historical increase in the initiation-mutation rates for the male cohorts and the promotion-mutation rates for the female cohorts. Interestingly, the calculated rates for initiation-mutations are in accord with mutation rates derived from observations of mutations in peripheral blood cells drawn from persons of different ages. Adenoma growth rates differed significantly between genders but were essentially historically invariant. In its present form, the model has also allowed us to calculate the rate of loss of heterozygosity (LOH) or loss of genomic imprinting (LOI) in adenomas to result in the high LOH/LOI fractions in tumors. But it has not allowed us to specify the number of events m required during promotion.
诱变的分子机制与大多数人患癌症的实际过程之间的关系仍未得到充分理解。一个缺失的环节是一个基于生理学但定量的模型,该模型将突变、细胞生长和更新过程联系起来。任何有用的模型还必须考虑到人类在遗传特征和环境经历方面的异质性。在过去50年中,这样一个关于癌症年龄特异性发病率的连贯代数模型一直在发展。这一发展主要是由诺德林[N.O.诺德林,一种关于癌症诱导机制的新理论,《英国癌症杂志》7 (1953) 68 - 72]、阿米蒂奇和多尔[P.阿米蒂奇,R.多尔,癌症的年龄分布与致癌作用的多阶段理论,《英国癌症杂志》8 (1) (1954) 1 - 12;P.阿米蒂奇,R.多尔,与人类癌症年龄分布相关的致癌作用两阶段理论,《英国癌症杂志》9 (2) (1957) 161 - 169]以及穆尔加夫卡尔和克努森[S.H.穆尔加夫卡尔,A.G.克努森 Jr.,突变与癌症:人类致癌作用的模型。《国家癌症研究所杂志》66 (6) (1981) 1037 - 1052]的努力推动的,他们的工作确定了两个限速阶段,与实验性致癌作用中的启动和促进阶段相对应。这些努力尚未完成的是对群体异质性的考量以及对腺瘤生长过程中生长和基因变化的完整描述。为了尝试完成一个统一的模型,我们在此以结肠癌为例,给出明确计算两阶段启动 - 促进模型基本参数的第一种方法。利用从20世纪30年代至今的公共记录,我们首先计算每个出生年份队列处于主要风险的比例,并记录历史变化。然后我们计算n次启动突变的速率乘积、m次促进突变的速率乘积以及结肠癌所源自的中间腺瘤性菌落的平均生长速率。我们发现,从1860年到1930年的出生年份队列中,处于结肠癌主要风险的人群比例在历史上约为42%时保持不变。我们研究的四个队列(每种性别的欧洲裔和非裔美国人)中的每一个都是如此。此外,数据表明男性队列的启动突变率和女性队列的促进突变率在历史上有所增加。有趣的是,计算出的启动突变率与从不同年龄人群外周血细胞突变观察中得出的突变率一致。腺瘤生长速率在性别之间存在显著差异,但在历史上基本保持不变。以其目前的形式,该模型还使我们能够计算腺瘤中杂合性缺失(LOH)或基因组印记缺失(LOI)的速率,以导致肿瘤中高比例的LOH/LOI。但它尚未使我们能够确定促进过程中所需的事件m的数量。