Suppr超能文献

散发型前庭神经鞘瘤发生和恶性转化的机制数学模型。

A mechanistic mathematical model of initiation and malignant transformation in sporadic vestibular schwannoma.

机构信息

Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK.

Department of Applied Mathematics, University of Washington, Seattle, WA, USA.

出版信息

Br J Cancer. 2022 Nov;127(10):1843-1857. doi: 10.1038/s41416-022-01955-8. Epub 2022 Sep 12.

Abstract

BACKGROUND

A vestibular schwannoma (VS) is a relatively rare, benign tumour of the eighth cranial nerve, often involving alterations to the gene NF2. Previous mathematical models of schwannoma incidence have not attempted to account for alterations in specific genes, and could not distinguish between nonsense mutations and loss of heterozygosity (LOH).

METHODS

Here, we present a mechanistic approach to modelling initiation and malignant transformation in schwannoma. Each parameter is associated with a specific gene or mechanism operative in Schwann cells, and can be determined by combining incidence data with empirical frequencies of pathogenic variants and LOH.

RESULTS

This results in new estimates for the base-pair mutation rate u = 4.48 × 10 and the rate of LOH = 2.03 × 10/yr in Schwann cells. In addition to new parameter estimates, we extend the approach to estimate the risk of both spontaneous and radiation-induced malignant transformation.

DISCUSSION

We conclude that radiotherapy is likely to have a negligible excess risk of malignancy for sporadic VS, with a possible exception of rapidly growing tumours.

摘要

背景

前庭神经鞘瘤(VS)是第八颅神经的一种相对罕见的良性肿瘤,常涉及 NF2 基因的改变。以前的神经鞘瘤发病率数学模型没有试图解释特定基因的改变,也无法区分无意义突变和杂合性丢失(LOH)。

方法

在这里,我们提出了一种用于建模神经鞘瘤起始和恶性转化的机制方法。每个参数都与施万细胞中作用的特定基因或机制相关联,并且可以通过将发病率数据与致病性变异和 LOH 的经验频率相结合来确定。

结果

这导致了在施万细胞中碱基对突变率 u = 4.48×10 和 LOH 率 = 2.03×10/yr 的新估计值。除了新的参数估计值外,我们还扩展了该方法来估计自发性和放射诱导恶性转化的风险。

讨论

我们得出的结论是,放射治疗对于散发性 VS 可能具有可忽略的恶性肿瘤超额风险,快速生长的肿瘤除外。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62c0/9643471/1aa73b49cd95/41416_2022_1955_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验