Suppr超能文献

17 Beta-estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in-vitro and in-vivo.

作者信息

Nuedling S, Kahlert S, Loebbert K, Doevendans P A, Meyer R, Vetter H, Grohé C

机构信息

Medizinische Poliklinik, University of Bonn, Germany.

出版信息

Cardiovasc Res. 1999 Aug 15;43(3):666-74. doi: 10.1016/s0008-6363(99)00093-0.

Abstract

OBJECTIVES

NO production has been attributed to play a major role in cardiac diseases such as cardiac hypertrophy and cardiac remodeling after myocardial infarction which display significant gender-based differences. Therefore we assessed the effect of 17 beta-estradiol (E2) on estrogen receptor (ER) alpha and beta and endothelial and inducible NO synthase in neonatal and adult rat cardiomyocytes.

METHODS

The presence of ER alpha and ER beta was demonstrated by immunofluorescence and western blot analysis as well as the expression pattern of inducible NO synthase (iNOS) and endothelial NOS (eNOS) in isolated cardiomyocytes from neonatal and adult rats. Furthermore, regulation of myocardial iNOS and eNOS expression by estrogen was evaluated in the myocardium from ovariectomized or sham-operated adult Wistar-Kyoto rats.

RESULTS

Incubation with E2 led to translocalization of the ER into the nucleus and increased receptor protein expression. E2 stimulated expression of iNOS and eNOS in both neonatal and adult cardiac myocytes. Coincubation with the pure anti-estrogen ICI 182,780 inhibited upregulation of ER and NOS expression. In ovariectomized rats myocardial iNOS and eNOS protein levels were significantly lower compared to sham-operated female animals.

CONCLUSION

Taken together, these results show that E2 stimulates the expression of iNOS/eNOS in neonatal and adult cardiomyocytes in-vivo and in-vitro. These novel findings provide a potential mechanism of how estrogen may modulate NOS expression and NO formation in the myocardium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验