Suppr超能文献

正常人唾液对淋病奈瑟菌的抑制作用。

Inhibition of Neisseria gonorrhoeae by normal human saliva.

作者信息

Mellersh A, Clark A, Hafiz S

出版信息

Br J Vener Dis. 1979 Feb;55(1):20-3. doi: 10.1136/sti.55.1.20.

Abstract

Saliva was found to be a powerful and specific inhibitor of Neisseria gonorrhoeae. Although 28 other species of bacteria were tested, including Neisseria meningitidis, Neisseria pharyngis var flava, Neisseria lactamica, and Neisseria catarrhalis, we failed to find any others sensitive to saliva under similar conditions. The physical properties of the inhibitory substance indicated that it might be salivary alpha-amylase. To test this hypothesis alpha-amylase was extracted from saliva and was shown to have a high antigonococcal activity. Hog pancreas alpha-amylase also showed strong antigonococcal activity, thus the observations indicate that for the strains we tested alpha-amylase is inhibitory to gonococci. This observation indicates that either the gonococcal outer cell wall contains some unique lipopolysaccharides or that the gonococcus is unusually dependent on the integrity of these moieties. Whichever speculation proves to be true it indicates a need for a careful study of the gonococcal cell wall.

摘要

唾液被发现是淋病奈瑟菌的一种强大且特异性的抑制剂。尽管对包括脑膜炎奈瑟菌、黄色咽炎奈瑟菌、乳酸奈瑟菌和卡他莫拉菌在内的其他28种细菌进行了测试,但我们未能在类似条件下发现其他对唾液敏感的细菌。抑制物质的物理特性表明它可能是唾液α淀粉酶。为了验证这一假设,从唾液中提取了α淀粉酶,并证明其具有高抗淋球菌活性。猪胰腺α淀粉酶也表现出很强的抗淋球菌活性,因此这些观察结果表明,对于我们测试的菌株,α淀粉酶对淋球菌具有抑制作用。这一观察结果表明,要么淋球菌外细胞壁含有一些独特的脂多糖,要么淋球菌异常依赖于这些部分的完整性。无论哪种推测被证明是正确的,都表明需要对淋球菌细胞壁进行仔细研究。

相似文献

1
Inhibition of Neisseria gonorrhoeae by normal human saliva.
Br J Vener Dis. 1979 Feb;55(1):20-3. doi: 10.1136/sti.55.1.20.
2
Amylase inhibits Neisseria gonorrhoeae by degrading starch in the growth medium.
J Clin Microbiol. 1983 Dec;18(6):1366-9. doi: 10.1128/jcm.18.6.1366-1369.1983.
3
Inhibition of Neisseria meningitidis by alpha-amylase.
Zentralbl Bakteriol Mikrobiol Hyg A. 1984 Dec;258(2-3):156-8. doi: 10.1016/s0176-6724(84)80033-4.

引用本文的文献

1
Inhibitory Activity of Antibacterial Mouthwashes and Antiseptic Substances against Neisseria gonorrhoeae.
Antimicrob Agents Chemother. 2022 Jun 21;66(6):e0004222. doi: 10.1128/aac.00042-22. Epub 2022 May 17.
2
Kissing, saliva exchange, and transmission of Neisseria gonorrhoeae.
Lancet Infect Dis. 2019 Oct;19(10):e367-e369. doi: 10.1016/S1473-3099(19)30306-8. Epub 2019 Jul 16.
3
Detection of inflammatory biomarkers in saliva and urine: Potential in diagnosis, prevention, and treatment for chronic diseases.
Exp Biol Med (Maywood). 2016 Apr;241(8):783-99. doi: 10.1177/1535370216638770. Epub 2016 Mar 24.
4
Salivary defense proteins: their network and role in innate and acquired oral immunity.
Int J Mol Sci. 2012;13(4):4295-4320. doi: 10.3390/ijms13044295. Epub 2012 Apr 2.
5
Amylase inhibits Neisseria gonorrhoeae by degrading starch in the growth medium.
J Clin Microbiol. 1983 Dec;18(6):1366-9. doi: 10.1128/jcm.18.6.1366-1369.1983.
6
Effects of alpha-amylase on in vitro growth of Legionella pneumophila.
Infect Immun. 1983 Jul;41(1):44-9. doi: 10.1128/iai.41.1.44-49.1983.
8
Induction of a cell wall variant of the gonococcus by human amylase.
Br J Vener Dis. 1980 Aug;56(4):230-4. doi: 10.1136/sti.56.4.230.
9
Characterization of salivary alpha-amylase binding to Streptococcus sanguis.
Infect Immun. 1989 Sep;57(9):2853-63. doi: 10.1128/iai.57.9.2853-2863.1989.

本文引用的文献

1
Gonococcal pharyngeal infections. Report of 110 cases.
Br J Vener Dis. 1973 Dec;49(6):491-9. doi: 10.1136/sti.49.6.491.
2
Gonococcal pharyngeal infection.
Clin Obstet Gynecol. 1975 Mar;18(1):121-9. doi: 10.1097/00003081-197503000-00011.
3
Prolonged survival of Neisseria gonorrhoeae in a new liquid medium.
Br J Vener Dis. 1976 Dec;52(6):381-3. doi: 10.1136/sti.52.6.381.
4
Studies on lipopolysaccharides isolated from strains of Neisseria gonorrhoeae.
J Gen Microbiol. 1975 May;88(1):123-31. doi: 10.1099/00221287-88-1-123.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验