Kotsonis P, Fröhlich L G, Shutenko Z V, Horejsi R, Pfleiderer W, Schmidt H H
Department of Pharmacology, Julius-Maximilians University, Versbacher Strasse 9, D-97078 Würzburg, Germany.
Biochem J. 2000 Mar 15;346 Pt 3(Pt 3):767-76.
The underlying mechanisms regulating the activity of the family of homodimeric nitric oxide synthases (NOSs) and, in particular, the requirement for (6R)-5,6,7,8-tetrahydro-L-biopterin (H(4)Bip) are not fully understood. Here we have investigated possible allosteric and stabilizing effects of H(4)Bip on neuronal NOS (NOS-I) during the conversion of substrate, L-arginine, into L-citrulline and nitric oxide. Indeed, in kinetic studies dual allosteric interactions between L-arginine and H(4)Bip activated recombinant human NOS-I to increase L-arginine turnover. Consistent with this was the observation that H(4)Bip, but not the pterin-based NOS inhibitor 2-amino-4,6-dioxo-3,4,5,6,8,8a,9,10-octahydrooxazolo[1, 2-f]-pteridine (PHS-32), caused an L-arginine-dependent increase in the haem Soret band, indicating an increase in substrate binding to recombinant human NOS-I. Conversely, L-arginine was observed to increase in a concentration-dependent manner H(4)Bip binding to pig brain NOS-I. Secondly, we investigated the stabilization of NOS quaternary structure by H(4)Bip in relation to uncoupled catalysis. Under catalytic assay conditions and in the absence of H(4)Bip, dimeric recombinant human NOS-I dissociated into inactive monomers. Monomerization was related to the uncoupling of reductive oxygen activation, because it was inhibited by both superoxide dismutase and the inhibitor N(omega)-nitro-L-arginine. Importantly, H(4)Bip was found to react chemically with superoxide (O(2)(-.)) and enzyme-bound H(4)Bip was consumed under O(2)(-.)-generating conditions in the absence of substrate. These results suggest that H(4)Bip allosterically activates NOS-I and stabilizes quaternary structure by a novel mechanism involving the direct interception of auto-damaging O(2)(-.).
调节同二聚体一氧化氮合酶(NOSs)家族活性的潜在机制,尤其是对(6R)-5,6,7,8-四氢-L-生物蝶呤(H₄Bip)的需求,尚未完全明确。在此,我们研究了在底物L-精氨酸转化为L-瓜氨酸和一氧化氮的过程中,H₄Bip对神经元型一氧化氮合酶(NOS-I)可能的变构和稳定作用。实际上,在动力学研究中,L-精氨酸与H₄Bip之间的双重变构相互作用激活了重组人NOS-I,以增加L-精氨酸的周转率。与此一致的是,观察到H₄Bip而非基于蝶呤的NOS抑制剂2-氨基-4,6-二氧代-3,4,5,6,8,8a,9,10-八氢恶唑并[1,2-f]-蝶啶(PHS-32)导致血红素Soret带的L-精氨酸依赖性增加,表明底物与重组人NOS-I的结合增加。相反,观察到L-精氨酸以浓度依赖性方式增加H₄Bip与猪脑NOS-I的结合。其次,我们研究了H₄Bip相对于解偶联催化对NOS四级结构的稳定作用。在催化测定条件下且不存在H₄Bip时,二聚体重组人NOS-I解离为无活性的单体。单体化与还原氧激活的解偶联有关,因为它受到超氧化物歧化酶和抑制剂Nⁿ-硝基-L-精氨酸的抑制。重要的是,发现H₄Bip与超氧化物(O₂⁻)发生化学反应,并且在无底物的O₂⁻生成条件下,酶结合的H₄Bip会被消耗。这些结果表明,H₄Bip通过一种涉及直接拦截自损伤性O₂⁻的新机制变构激活NOS-I并稳定四级结构。