Suppr超能文献

用于测定隐形眼镜消毒溶液对棘阿米巴原虫属有效性的流式细胞术

Flow cytometry for determination of the efficacy of contact lens disinfecting solutions against Acanthamoeba spp.

作者信息

Borazjani R N, May L L, Noble J A, Avery S V, Ahearn D G

机构信息

Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA.

出版信息

Appl Environ Microbiol. 2000 Mar;66(3):1057-61. doi: 10.1128/AEM.66.3.1057-1061.2000.

Abstract

Flow cytometric analyses of cellular staining with fluorescent viability dyes and direct microscopic observations of methylene blue exclusion were compared for evaluation of the effects of a chlorhexidine gluconate-based contact lens disinfectant solution and a polyhexamethylene biguanide solution against cysts and trophozoites of Acanthamoeba castellanii and Acanthamoeba polyphaga. The flow cytometric procedure with propidium iodide (used to stain dead cells) indicated that more than 90% of trophozoites of both species (inocula of 10(5) to 10(6)/ml) at 22 degrees C lost their viability after 4 h of exposure to chlorhexidine. When propidium iodide was used in combination with fluorescein diacetate (for live cells), the apparent number of propidium iodide-stained cells was reduced, but the relative efficacies of the two biguanide solutions appeared unchanged from those evident with the single dyes; the chlorhexidine solution was more effective than the polyhexamethylene biguanide solution. Similar data were obtained with the more cumbersome methylene blue exclusion procedure. Flow cytometric analyses provided a statistically reproducible and rapid procedure for determining the relative antiamoebal efficacies of the disinfecting solutions.

摘要

比较了用荧光活力染料进行细胞染色的流式细胞术分析和亚甲蓝排斥的直接显微镜观察,以评估基于葡萄糖酸洗必泰的隐形眼镜消毒溶液和聚六亚甲基双胍溶液对卡氏棘阿米巴和多食棘阿米巴的囊肿和滋养体的作用。用碘化丙啶(用于染色死细胞)的流式细胞术程序表明,在22℃下,两种物种(接种量为10(5)至10(6)/ml)的滋养体在接触洗必泰4小时后,超过90%失去活力。当碘化丙啶与荧光素二乙酸酯(用于活细胞)联合使用时,碘化丙啶染色细胞的表观数量减少,但两种双胍溶液的相对效力与单染料时相比似乎没有变化;洗必泰溶液比聚六亚甲基双胍溶液更有效。用更繁琐的亚甲蓝排斥程序也获得了类似的数据。流式细胞术分析为确定消毒溶液的相对抗阿米巴效力提供了一种具有统计学可重复性的快速程序。

相似文献

1
Flow cytometry for determination of the efficacy of contact lens disinfecting solutions against Acanthamoeba spp.
Appl Environ Microbiol. 2000 Mar;66(3):1057-61. doi: 10.1128/AEM.66.3.1057-1061.2000.
2
Phagocytosis affects biguanide sensitivity of Acanthamoeba spp.
Antimicrob Agents Chemother. 2002 Jul;46(7):2069-76. doi: 10.1128/AAC.46.7.2069-2076.2002.
3
Effects of polyhexamethylene biguanide and chlorhexidine on four species of Acanthamoeba in vitro.
Curr Eye Res. 1996 Feb;15(2):225-8. doi: 10.3109/02713689608997418.
4
Effects of multipurpose solutions on the viability and encystment of acanthamoeba determined by flow cytometry.
Eye Contact Lens. 2013 May;39(3):228-33. doi: 10.1097/ICL.0b013e31828af147.
5
Efficacy of contact lens storage solutions against different acanthamoeba strains.
Cornea. 2006 May;25(4):423-7. doi: 10.1097/01.ico.0000214204.22200.7f.
6
Susceptibility of Acanthamoeba castellanii to contact lens disinfecting solutions.
Antimicrob Agents Chemother. 1995 Jul;39(7):1596-8. doi: 10.1128/AAC.39.7.1596.
7
Effects of biocides on Acanthamoeba castellanii as measured by flow cytometry and plaque assay.
J Antimicrob Chemother. 1997 Aug;40(2):227-33. doi: 10.1093/jac/40.2.227.

引用本文的文献

1
Challenges and Achievements in the In Vitro Culture of : Insights into the Excystation Process.
Pathogens. 2025 Jul 23;14(8):725. doi: 10.3390/pathogens14080725.
3
Nisin Induces Cell-Cycle Arrest in Free-Living Amoebae Acanthamoeba castellanii.
Acta Parasitol. 2022 Mar;67(1):511-517. doi: 10.1007/s11686-021-00436-x. Epub 2021 Jun 22.
4
Variables Affecting the Recovery of Trophozoites.
Pathogens. 2021 Feb 18;10(2):221. doi: 10.3390/pathogens10020221.
6
Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine.
Antimicrob Agents Chemother. 2015 Dec 14;60(3):1283-8. doi: 10.1128/AAC.01123-15.
7
In vitro comparative assessment of different viability assays in Acanthamoeba castellanii and Acanthamoeba polyphaga trophozoites.
Parasitol Res. 2013 Dec;112(12):4087-95. doi: 10.1007/s00436-013-3599-5. Epub 2013 Sep 12.
10
Pathogen-pathogen interaction: a syndemic model of complex biosocial processes in disease.
Virulence. 2010 Jan-Feb;1(1):10-8. doi: 10.4161/viru.1.1.9933.

本文引用的文献

1
Acanthamoeba castellanii: growth, encystment, excystment and biocide susceptibility.
J Infect. 1998 Jan;36(1):43-8. doi: 10.1016/s0163-4453(98)93054-7.
2
Effects of biocides on Acanthamoeba castellanii as measured by flow cytometry and plaque assay.
J Antimicrob Chemother. 1997 Aug;40(2):227-33. doi: 10.1093/jac/40.2.227.
3
Contact lenses, disinfectants, and Acanthamoeba keratitis.
Adv Appl Microbiol. 1997;43:35-56. doi: 10.1016/s0065-2164(08)70222-3.
4
A quantitative method to evaluate neutralizer toxicity against Acanthamoeba castellanii.
Appl Environ Microbiol. 1996 Sep;62(9):3521-6. doi: 10.1128/aem.62.9.3521-3526.1996.
5
Effects of polyhexamethylene biguanide and chlorhexidine on four species of Acanthamoeba in vitro.
Curr Eye Res. 1996 Feb;15(2):225-8. doi: 10.3109/02713689608997418.
7
Bilateral Acanthamoeba keratitis and gas-permeable contact lenses.
Am J Ophthalmol. 1993 Nov 15;116(5):651-2. doi: 10.1016/s0002-9394(14)73216-7.
8
Killing acanthamoebae with polyaminopropyl biguanide: quantitation and kinetics.
Antimicrob Agents Chemother. 1994 Apr;38(4):886-8. doi: 10.1128/AAC.38.4.886.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验