Moncrieffe M C, Juranic N, Kemple M D, Potter J D, Macura S, Prendergast F G
Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First St. SW, Rochester, MN 55905, USA.
J Mol Biol. 2000 Mar 17;297(1):147-63. doi: 10.1006/jmbi.2000.3549.
Heterogeneous fluorescence intensity decays of tryptophan in proteins are often rationalized using a model which proposes that different rotameric states of the indole alanyl side-chain are responsible for the observed fluorescence lifetime heterogeneity. We present here the study of a mutant of carp parvalbumin bearing a single tryptophan residue at position 102 (F102W) whose fluorescence intensity decay is heterogeneous and assess the applicability of a rotamer model to describe the fluorescence decay data. We have determined the solution structure of F102W in the calcium ligated state using multi-dimensional nuclear magnetic resonance (NMR) and have used the minimum perturbation mapping technique to explore the possible existence of multiple conformations of the indole moiety of Trp102 of F102W and, for comparison, Trp48 of holo-azurin. The maps for parvalbumin suggest two potential conformations of the indole side-chain. The high energy barrier for rotational isomerization between these conformers implies that interwell rotation would occur on time-scales of milliseconds or greater and suggests a rotamer basis for the heterogeneous fluorescence. However, the absence of alternate Trp102 conformers in the NMR data (to within 3 % of the dominant species) suggests that the heterogeneous fluorescence of Trp102 may arise from mechanisms independent of rotameric states of the Trp side-chain. The map for holo-azurin has only one conformation, and suggests a rotamer model may not be required to explain its heterogeneous fluorescence intensity decay. The backbone and Trp102 side-chain dynamics at 30 degrees C of F102W has been characterized based on an analysis of (15)N NMR relaxation data which we have interpreted using the Lipari-Szabo formalism. High order parameter (S(2)) values were obtained for both the helical and loop regions. Additionally, the S(2) values imply that the calcium binding CD and EF loops are not strictly equivalent. The S(2) value for the indole side-chain of Trp102 obtained from the fluorescence, NMR relaxation and minimum perturbation data are consistent with a Trp moiety whose motion is restricted.
蛋白质中色氨酸的非均匀荧光强度衰减通常用一种模型来解释,该模型认为吲哚丙氨酰侧链的不同旋转异构体状态是观察到的荧光寿命非均匀性的原因。我们在此展示了对鲤鱼小清蛋白突变体的研究,该突变体在第102位(F102W)有一个单一色氨酸残基,其荧光强度衰减是非均匀的,并评估了旋转异构体模型用于描述荧光衰减数据的适用性。我们使用多维核磁共振(NMR)确定了处于钙结合状态的F102W的溶液结构,并使用最小扰动映射技术来探索F102W的Trp102吲哚部分以及为作比较的全铜蓝蛋白的Trp48可能存在的多种构象。小清蛋白的映射图表明吲哚侧链有两种潜在构象。这些构象之间旋转异构化的高能垒意味着阱间旋转将在毫秒或更长的时间尺度上发生,并暗示了非均匀荧光的旋转异构体基础。然而,NMR数据中不存在替代的Trp102构象(占主要物种的3%以内)表明Trp102的非均匀荧光可能源于与Trp侧链旋转异构体状态无关的机制。全铜蓝蛋白的映射图只有一种构象,并表明可能不需要旋转异构体模型来解释其非均匀荧光强度衰减。基于对我们使用Lipari-Szabo形式主义解释的(15)N NMR弛豫数据的分析,表征了30℃下F102W的主链和Trp102侧链动力学。获得了螺旋区和环区的高阶参数(S(2))值。此外,S(2)值表明钙结合CD环和EF环并不完全等同。从荧光、NMR弛豫和最小扰动数据获得 的Trp102吲哚侧链的S(2)值与运动受限的Trp部分一致。