Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York, United States of America.
PLoS One. 2011 Jan 11;6(1):e16104. doi: 10.1371/journal.pone.0016104.
In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM). In this model, each cell's input is described by: 1) a stimulus filter (STRF); and 2) a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs) and modulation limited (ml) noise. We compare this model to normalized reverse correlation (NRC), the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons.
在听觉系统中,单个神经元的刺激-反应特性通常用频谱时间 receptive field (STRF)来描述,这是一种将声音刺激的频谱图与神经元的瞬时放电率联系起来的线性核。已经有几种算法被用于从自然刺激的反应中估计 STRF;这些算法在其功能模型、代价函数和正则化方法上有所不同。在这里,我们使用广义线性模型 (GLM) 来描述听觉神经元的刺激-反应函数。在这个模型中,每个细胞的输入由以下两部分描述:1)刺激滤波器(STRF);2)一个后峰滤波器,它捕获了神经元的峰发放历史的依赖性。模型的输出由一系列的峰发放而不是瞬时放电率给出,这允许对新刺激的峰发放反应进行预测。我们通过最大惩罚似然法将模型拟合到斑胸草雀听觉中脑神经元对同物种叫声(歌曲)和调制限制(ml)噪声的反应中的放电活动。我们根据预测能力和估计 STRF 的基本调谐特性,将该模型与归一化反向相关(NRC)进行比较,NRC 是估计 STRF 的传统方法。我们发现,具有稀疏先验的 GLM 对这两种刺激类别的新反应的预测都明显优于 NRC。重要的是,我们发现,来自两个模型的 STRF 可以有很大的差异,并且 GLM STRF 在刺激类之间比 NRC STRF 更一致。这些结果表明,当在这些神经元中研究复杂声音的反应时,具有稀疏先验的 GLM 比 NRC 方法提供了对频谱时间调谐的更准确描述。