Suppr超能文献

初级听觉皮层中时间感受野的动态网络模型。

A dynamic network model of temporal receptive fields in primary auditory cortex.

机构信息

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.

出版信息

PLoS Comput Biol. 2019 May 6;15(5):e1006618. doi: 10.1371/journal.pcbi.1006618. eCollection 2019 May.

Abstract

Auditory neurons encode stimulus history, which is often modelled using a span of time-delays in a spectro-temporal receptive field (STRF). We propose an alternative model for the encoding of stimulus history, which we apply to extracellular recordings of neurons in the primary auditory cortex of anaesthetized ferrets. For a linear-non-linear STRF model (LN model) to achieve a high level of performance in predicting single unit neural responses to natural sounds in the primary auditory cortex, we found that it is necessary to include time delays going back at least 200 ms in the past. This is an unrealistic time span for biological delay lines. We therefore asked how much of this dependence on stimulus history can instead be explained by dynamical aspects of neurons. We constructed a neural-network model whose output is the weighted sum of units whose responses are determined by a dynamic firing-rate equation. The dynamic aspect performs low-pass filtering on each unit's response, providing an exponentially decaying memory whose time constant is individual to each unit. We find that this dynamic network (DNet) model, when fitted to the neural data using STRFs of only 25 ms duration, can achieve prediction performance on a held-out dataset comparable to the best performing LN model with STRFs of 200 ms duration. These findings suggest that integration due to the membrane time constants or other exponentially-decaying memory processes may underlie linear temporal receptive fields of neurons beyond 25 ms.

摘要

听觉神经元对刺激历史进行编码,通常使用时频谱响应域 (STRF) 中的时间延迟来建模。我们提出了一种替代模型来对刺激历史进行编码,并将其应用于麻醉雪貂初级听觉皮层的细胞外记录。对于线性-非线性 STRF 模型 (LN 模型) 来说,要实现对初级听觉皮层中自然声音的单个神经元反应进行高预测性能,我们发现有必要在过去至少 200 毫秒的时间内包含时间延迟。这是生物延迟线的不切实际的时间跨度。因此,我们想知道有多少对刺激历史的依赖可以用神经元的动力学方面来解释。我们构建了一个神经网络模型,其输出是响应由动态放电率方程决定的单元的加权和。动态方面对每个单元的响应进行低通滤波,提供具有个体单元时间常数的指数衰减记忆。我们发现,这种动态网络 (DNet) 模型,当使用仅持续 25 毫秒的 STRF 拟合神经数据时,可以在保留数据集中实现与具有 200 毫秒 STRF 的最佳 LN 模型相当的预测性能。这些发现表明,由于膜时间常数或其他指数衰减记忆过程引起的整合可能是神经元线性时间响应域超过 25 毫秒的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df17/6534339/43dd8d27986d/pcbi.1006618.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验