Suppr超能文献

视网膜穆勒(神经胶质)细胞的谷胱甘肽含量:病理状况的影响

The glutathione content of retinal Müller (glial) cells: effect of pathological conditions.

作者信息

Huster D, Reichenbach A, Reichelt W

机构信息

Paul-Flechsig-Institute for Brain Research, Department of Neurophysiology, University of Leipzig, Germany.

出版信息

Neurochem Int. 2000 Apr;36(4-5):461-9. doi: 10.1016/s0197-0186(99)00149-7.

Abstract

Maintenance of isolated retinal Müller (glial) cells in glutamate-free solutions over 7 h causes a significant loss of their initial glutathione content; this loss is largely prevented by the blockade of glutamine synthesis using methionine sulfoximine (5 mM). Anoxia does not reduce the glutathione content of Müller cells when glucose (11 mM), glutamate and cystine (0.1 mM each) are present. In contrast, simulation of total ischemia (i.e., anoxia plus removal of glucose) decreases the glutathione levels dramatically, even in the presence of glutamate and cystine. Less severe effects are caused by high extracellular K+ (40 mM). Reactive oxygen species are generated in the retina under various conditions, such as anoxia, ischemia, and reperfusion. One of the crucial substances protecting the retina against reactive oxygen species is glutathione, a tripeptide constituted of glutamate, cysteine and glycine. It was recently shown that glutathione can be synthesized in retinal Müller glial cells and that glutamate is the rate-limiting substance. In this study, glutathione levels were determined in acutely isolated guinea-pig Müller cells using the glutathione-sensitive fluorescent dye monochlorobimane. The purpose was to find out how the glial glutathione content is affected by anoxia/ischemia and accompanying pathophysiological events such as depolarization of the cell membrane. Our results further strengthen the view that glutamate is rate-limiting for the glutathione synthesis in glial cells. During glutamate deficiency, as caused by e.g., impaired glutamate uptake, this amino acid is preferentially delivered to the glutamate-glutamine pathway, at the expense of glutathione. This mechanism may contribute to the finding that total ischemia (but not anoxia) causes a depletion of glial glutathione. In situ depletion may be accelerated by the ischemia-induced increase of extracellular K+, decreasing the driving force for glutamate uptake. The ischemia-induced lack of glutathione is particularly fatal considering the increased production of reactive oxygen species under this condition. Therefore the therapeutic application of exogenous free radical scavengers is greatly recommended.

摘要

将分离的视网膜穆勒(神经胶质)细胞置于无谷氨酸溶液中长达7小时会导致其初始谷胱甘肽含量显著降低;使用蛋氨酸亚砜亚胺(5 mM)阻断谷氨酰胺合成可在很大程度上防止这种降低。当存在葡萄糖(11 mM)、谷氨酸和胱氨酸(各0.1 mM)时,缺氧不会降低穆勒细胞的谷胱甘肽含量。相反,模拟完全缺血(即缺氧加去除葡萄糖)会显著降低谷胱甘肽水平,即使存在谷氨酸和胱氨酸也是如此。高细胞外钾离子(40 mM)产生的影响较小。在多种条件下,如缺氧、缺血和再灌注时,视网膜中会产生活性氧。保护视网膜免受活性氧损伤的关键物质之一是谷胱甘肽,它是一种由谷氨酸、半胱氨酸和甘氨酸组成的三肽。最近的研究表明,谷胱甘肽可在视网膜穆勒神经胶质细胞中合成,且谷氨酸是限速物质。在本研究中,使用对谷胱甘肽敏感的荧光染料单氯双氢杨梅素测定急性分离的豚鼠穆勒细胞中的谷胱甘肽水平。目的是弄清楚神经胶质细胞谷胱甘肽含量如何受到缺氧/缺血以及伴随的病理生理事件(如细胞膜去极化)的影响。我们的结果进一步强化了谷氨酸是神经胶质细胞谷胱甘肽合成限速物质的观点。在谷氨酸缺乏时,例如由于谷氨酸摄取受损导致,这种氨基酸会优先进入谷氨酸 - 谷氨酰胺途径,从而以谷胱甘肽为代价。这种机制可能有助于解释完全缺血(而非缺氧)导致神经胶质细胞谷胱甘肽耗竭这一现象。缺血诱导的细胞外钾离子增加可能会加速原位耗竭,降低谷氨酸摄取的驱动力。考虑到在这种情况下活性氧生成增加,缺血诱导的谷胱甘肽缺乏尤其致命。因此,强烈建议治疗性应用外源性自由基清除剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验