Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA.
Kinesiology Program, Penn State Harrisburg, Middletown, PA.
Diabetes. 2022 May 1;71(5):1051-1062. doi: 10.2337/db21-0853.
Clinical studies support a role for the protein regulated in development and DNA damage response 1 (REDD1) in ischemic retinal complications. To better understand how REDD1 contributes to retinal pathology, we examined human single-cell sequencing data sets and found specificity of REDD1 expression that was consistent with markers of retinal Müller glia. Thus, we investigated the hypothesis that REDD1 expression specifically in Müller glia contributes to diabetes-induced retinal pathology. The retina of Müller glia-specific REDD1 knockout (REDD1-mgKO) mice exhibited dramatic attenuation of REDD1 transcript and protein expression. In the retina of streptozotocin-induced diabetic control mice, REDD1 protein expression was enhanced coincident with an increase in oxidative stress. In the retina of diabetic REDD1-mgKO mice, there was no increase in REDD1 protein expression, and oxidative stress was reduced compared with diabetic control mice. In both Müller glia within the retina of diabetic mice and human Müller cell cultures exposed to hyperglycemic conditions, REDD1 was necessary for increased expression of the gliosis marker glial fibrillary acidic protein. The effect of REDD1 deletion in preventing gliosis was associated with suppression of oxidative stress and required the antioxidant transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2). In contrast to diabetic control mice, diabetic REDD1-mgKO mice did not exhibit retinal thinning, increased markers of neurodegeneration within the retinal ganglion cell layer, or deficits in visual function. Overall, the findings support a key role for Müller glial REDD1 in the failed adaptive response of the retina to diabetes that includes gliosis, neurodegeneration, and impaired vision.
临床研究支持蛋白质调控发育和 DNA 损伤反应 1(REDD1)在缺血性视网膜并发症中的作用。为了更好地了解 REDD1 如何导致视网膜病变,我们检查了人类单细胞测序数据集,发现 REDD1 的表达特异性与视网膜 Muller 胶质细胞的标志物一致。因此,我们假设 REDD1 在 Muller 胶质细胞中的特异性表达有助于糖尿病引起的视网膜病变。Muller 胶质细胞特异性 REDD1 敲除(REDD1-mgKO)小鼠的视网膜中 REDD1 转录本和蛋白表达明显减弱。在链脲佐菌素诱导的糖尿病对照小鼠的视网膜中,REDD1 蛋白表达增强,同时氧化应激增加。在糖尿病 REDD1-mgKO 小鼠的视网膜中,REDD1 蛋白表达没有增加,氧化应激与糖尿病对照小鼠相比降低。在糖尿病小鼠的视网膜内 Muller 胶质细胞中和暴露于高血糖条件下的人 Muller 细胞培养物中,REDD1 对于神经胶质标志物胶质纤维酸性蛋白的表达增加是必需的。REDD1 缺失在预防神经胶质增生中的作用与抑制氧化应激有关,需要抗氧化转录因子核因子红细胞 2 相关因子 2(Nrf2)。与糖尿病对照小鼠相比,糖尿病 REDD1-mgKO 小鼠没有表现出视网膜变薄、视网膜神经节细胞层内神经退行性变标志物增加或视觉功能缺陷。总体而言,这些发现支持 Muller 胶质细胞 REDD1 在包括神经胶质增生、神经退行性变和视力受损在内的视网膜对糖尿病的适应性反应失败中的关键作用。