Reichelt W, Stabel-Burow J, Pannicke T, Weichert H, Heinemann U
Paul-Flechsig-Institute for Brain Research, Department of Neurophysiology, University of Leipzig, Germany.
Neuroscience. 1997 Apr;77(4):1213-24. doi: 10.1016/s0306-4522(96)00509-x.
The dependence of intracellular glutathione, an important radical scavenger, on the extracellular glutamate and cystine concentration and the velocity of the high affinity sodium/glutamate transporter was studied in freshly-isolated Müller glial cells of the guinea-pig, kept in vitro for up to 11 h. To this end the relative Müller cell glutathione levels were measured using the fluorescent dye monochlorobimane, using different concentrations of glutamate and cystine in Ringer solution. In some experiments L-buthionine-[S,R]-sulfoximine, a blocker of glutathione synthesis, or L-trans-pyrrolidine-2,4-dicarboxylic acid and L-alpha-aminoadipic acid, inhibitors of glutamate uptake, were added. The Müller cells maintained about 80% of the normal glutathione level when maintained in Ringer solution containing 100 microM glutamate for 11 h. When under these conditions 100 microM cystine was added, the glutathione level increased to values, which were even higher than those at the beginning of the incubation period. Addition of cystine without glutamate caused a run down of the glutathione level to about 45% of the normal level, which is comparable to the run down in pure Ringer solution. Likewise, application of L-buthionine-[S,R]-sulfoximine (5 mM) lead to a strong run down of the glutathione level even in glutamate/cystine (100 microM)-containing solution. A similar suppressing effect was observed using L-trans-pyrrolidine-2,4-dicarboxylic acid and L-alpha-aminoadipic acid in the presence of 100 microM cystine and glutamate. We conclude that the intracellular glutamate concentration of the Müller cells is determined by the extracellular glutamate concentration and the velocity of the sodium/glutamate uptake. Consequently, cystine uptake into Müller cells, which is performed by the cystine/glutamate antiporter, is fueled by the sodium/glutamate transporter with intracellular glutamate. Both glutamate and cystine are also substrates for glutathione synthesis. The glutathione level is logically limited by the capacity of the sodium/glutamate transporter to provide glutamate intracellularly for, first, cystine uptake and, second, direct insertion into glutathione. Accordingly, the glutathione level is reduced when the sodium/glutamate transporter is blocked. Thus, a diminution of the glutathione level should be taken into consideration when the effects of sodium/glutamate uptake failure and reduced intracellular glutamate concentrations are discussed.
在体外培养长达11小时的豚鼠新鲜分离的Müller胶质细胞中,研究了细胞内重要的自由基清除剂谷胱甘肽对细胞外谷氨酸和胱氨酸浓度以及高亲和力钠/谷氨酸转运体速度的依赖性。为此,使用荧光染料单氯双马来酰胺,在林格氏溶液中使用不同浓度的谷氨酸和胱氨酸,测量相对的Müller细胞谷胱甘肽水平。在一些实验中,添加了谷胱甘肽合成阻滞剂L-丁硫氨酸-[S,R]-亚砜亚胺,或谷氨酸摄取抑制剂L-反式吡咯烷-2,4-二羧酸和L-α-氨基己二酸。当在含有100μM谷氨酸的林格氏溶液中培养11小时时,Müller细胞维持了约80%的正常谷胱甘肽水平。在这些条件下添加100μM胱氨酸时,谷胱甘肽水平升高至甚至高于孵育期开始时的值。在没有谷氨酸的情况下添加胱氨酸会导致谷胱甘肽水平降至正常水平的约45%,这与在纯林格氏溶液中的降低情况相当。同样,即使在含有谷氨酸/胱氨酸(100μM)的溶液中应用L-丁硫氨酸-[S,R]-亚砜亚胺(5mM)也会导致谷胱甘肽水平大幅降低。在存在100μM胱氨酸和谷氨酸的情况下,使用L-反式吡咯烷-2,4-二羧酸和L-α-氨基己二酸也观察到了类似的抑制作用。我们得出结论,Müller细胞的细胞内谷氨酸浓度由细胞外谷氨酸浓度和钠/谷氨酸摄取速度决定。因此,通过胱氨酸/谷氨酸反向转运体进行的胱氨酸摄取到Müller细胞中,由钠/谷氨酸转运体与细胞内谷氨酸共同驱动。谷氨酸和胱氨酸也是谷胱甘肽合成的底物。谷胱甘肽水平在逻辑上受到钠/谷氨酸转运体在细胞内提供谷氨酸的能力的限制,首先用于胱氨酸摄取,其次用于直接插入谷胱甘肽。因此,当钠/谷氨酸转运体被阻断时,谷胱甘肽水平会降低。因此,在讨论钠/谷氨酸摄取失败和细胞内谷氨酸浓度降低的影响时,应考虑谷胱甘肽水平的降低。