Suppr超能文献

使用声门噪声测量法识别病理性嗓音。

Identification of pathological voices using glottal noise measures.

作者信息

Parsa V, Jamieson D G

机构信息

National Center for Audiology, The University of Western Ontario, London, Canada.

出版信息

J Speech Lang Hear Res. 2000 Apr;43(2):469-85. doi: 10.1044/jslhr.4302.469.

Abstract

We investigated the abilities of four fundamental frequency (F0)-dependent and two F0-independent measures to quantify vocal noise. Two of the F0-dependent measures were computed in the time domain, and two were computed using spectral information from the vowel. The F0-independent measures were based on the linear prediction (LP) modeling of vowel samples. Tests using a database of sustained vowel samples, collected from 53 normal and 175 pathological talkers, showed that measures based on the LP model were much superior to the other measures. A classification rate of 96.5% was achieved by a parameter that quantifies the spectral flatness of the unmodeled component of the vowel sample.

摘要

我们研究了四种与基频(F0)相关以及两种与F0无关的测量方法量化嗓音噪声的能力。其中两种与F0相关的测量方法是在时域中计算得出的,另外两种则利用元音的频谱信息进行计算。与F0无关的测量方法基于元音样本的线性预测(LP)建模。使用从53名正常发声者和175名病态发声者收集的持续元音样本数据库进行的测试表明,基于LP模型的测量方法比其他方法优越得多。通过对元音样本未建模成分的频谱平坦度进行量化的一个参数,实现了96.5%的分类率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验