Moore C W, McKoy J, Dardalhon M, Davermann D, Martinez M, Averbeck D
Department of Microbiology and Immunology, City University of New York Medical School/Sophie Davis School of Biomedical Education and Graduate Programs in Biochemistry and Biology, New York, New York 10031, USA.
Genetics. 2000 Mar;154(3):1085-99. doi: 10.1093/genetics/154.3.1085.
Chromosomal repair was studied in stationary-phase Saccharomyces cerevisiae, including rad52/rad52 mutant strains deficient in repairing double-strand breaks (DSBs) by homologous recombination. Mutant strains suffered more chromosomal fragmentation than RAD52/RAD52 strains after treatments with cobalt-60 gamma irradiation or radiomimetic bleomycin, except after high bleomycin doses when chromosomes from rad52/rad52 strains contained fewer DSBs than chromosomes from RAD52/RAD52 strains. DNAs from both genotypes exhibited quick rejoining following gamma irradiation and sedimentation in isokinetic alkaline sucrose gradients, but only chromosomes from RAD52/RAD52 strains exhibited slower rejoining (10 min to 4 hr in growth medium). Chromosomal DSBs introduced by gamma irradiation and bleomycin were analyzed after pulsed-field gel electrophoresis. After equitoxic damage by both DNA-damaging agents, chromosomes in rad52/rad52 cells were reconstructed under nongrowth conditions [liquid holding (LH)]. Up to 100% of DSBs were eliminated and survival increased in RAD52/RAD52 and rad52/rad52 strains. After low doses, chromosomes were sometimes degraded and reconstructed during LH. Chromosomal reconstruction in rad52/rad52 strains was dose dependent after gamma irradiation, but greater after high, rather than low, bleomycin doses with or without LH. These results suggest that a threshold of DSBs is the requisite signal for DNA-damage-inducible repair, and that nonhomologous end-joining repair or another repair function is a dominant mechanism in S. cerevisiae when homologous recombination is impaired.
对处于稳定期的酿酒酵母中的染色体修复进行了研究,包括通过同源重组修复双链断裂(DSB)存在缺陷的rad52/rad52突变株。在用钴-60γ射线或拟放射菌素博来霉素处理后,突变株比RAD52/RAD52株遭受更多的染色体断裂,不过在高剂量博来霉素处理后,rad52/rad52株的染色体所含DSB比RAD52/RAD52株的少。两种基因型的DNA在γ射线照射后均表现出快速重新连接,并在等速碱性蔗糖梯度中沉降,但只有RAD52/RAD52株的染色体表现出较慢的重新连接(在生长培养基中为10分钟至4小时)。通过脉冲场凝胶电泳分析了由γ射线和博来霉素引入的染色体DSB。在两种DNA损伤剂造成等毒性损伤后,rad52/rad52细胞中的染色体在非生长条件下[液体保存(LH)]进行了重建。在RAD52/RAD52和rad52/rad52株中,高达100%的DSB被消除,存活率增加。低剂量处理后,染色体有时在LH过程中会降解并重建。γ射线照射后,rad52/rad52株中的染色体重建呈剂量依赖性,但在有或没有LH的情况下,高剂量博来霉素处理后的重建效果比低剂量时更好。这些结果表明,DSB的阈值是DNA损伤诱导修复的必要信号,并且当同源重组受损时,非同源末端连接修复或另一种修复功能是酿酒酵母中的主要修复机制。