Firmenich A A, Elias-Arnanz M, Berg P
Department of Biochemistry, Beckman Center for Molecular & Genetic Medicine, Stanford University School of Medicine, California 94305.
Mol Cell Biol. 1995 Mar;15(3):1620-31. doi: 10.1128/MCB.15.3.1620.
To understand the mechanisms involved in homologous recombination, we have performed a search for Saccharomyces cerevisiae mutants unable to carry out plasmid-to-chromosome gene conversion. For this purpose, we have developed a colony color assay in which recombination is induced by the controlled delivery of double-strand breaks (DSBs). Recombination occurs between a chromosomal mutant ade2 allele and a second plasmid-borne ade2 allele where DSBs are introduced via the site-specific HO endonuclease. Besides isolating a number of new alleles in known rad genes, we identified a novel allele of the RFA1 gene, rfa1-44, which encodes the large subunit of the heterotrimeric yeast single-stranded DNA-binding protein RPA. Characterization of rfa1-44 revealed that it is, like members of the RAD52 epistasis group, sensitive to X rays, high doses of UV, and HO-induced DSBs. In addition, rfa1-44 shows a reduced ability to undergo sporulation and HO-induced gene conversion. The mutation was mapped to a single-base substitution resulting in an aspartate at amino acid residue 77 instead of glycine. Moreover, all radiation sensitivities and repair defects of rfa1-44 are suppressed by RAD52 in a dose-dependent manner, and one RAD52 mutant allele, rad52-34, displays nonallelic noncomplementation when crossed with rfa1-44. Presented is a model accounting for this genetic interaction in which Rfa1, in a complex with Rad52, serves to assemble other proteins of the recombination-repair machinery at the site of DSBs and other kinds of DNA damage. We believe that our findings and those of J. Smith and R. Rothstein (Mol. Cell. Biol. 15:1632-1641, 1995) are the first in vivo demonstrations of the involvement of a eukaryotic single-stranded binding protein in recombination and repair processes.
为了解同源重组所涉及的机制,我们对酿酒酵母中无法进行质粒到染色体基因转换的突变体进行了搜索。为此,我们开发了一种菌落颜色测定法,其中通过控制双链断裂(DSB)的传递来诱导重组。重组发生在染色体突变体ade2等位基因与第二个质粒携带的ade2等位基因之间,其中DSB通过位点特异性HO内切核酸酶引入。除了在已知的rad基因中分离出一些新的等位基因外,我们还鉴定出RFA1基因的一个新等位基因rfa1-44,它编码异源三聚体酵母单链DNA结合蛋白RPA的大亚基。对rfa1-44的表征表明,它与RAD52上位性组的成员一样,对X射线、高剂量紫外线和HO诱导的DSB敏感。此外,rfa1-44显示出孢子形成和HO诱导的基因转换能力降低。该突变被定位到一个单碱基取代,导致氨基酸残基77处为天冬氨酸而非甘氨酸。此外,rfa1-44的所有辐射敏感性和修复缺陷都被RAD52以剂量依赖的方式抑制,并且一个RAD52突变等位基因rad52-34与rfa1-44杂交时表现出非等位非互补性。本文提出了一个解释这种遗传相互作用的模型,其中Rfa1与Rad52形成复合物,用于在DSB和其他类型的DNA损伤位点组装重组修复机制的其他蛋白质。我们相信,我们的发现以及J. Smith和R. Rothstein(《分子与细胞生物学》15:1632 - 1641, 1995)的发现是真核单链结合蛋白参与重组和修复过程的首次体内证明。