Suppr超能文献

黑腹果蝇间接飞行肌的体内X射线衍射

In vivo x-ray diffraction of indirect flight muscle from Drosophila melanogaster.

作者信息

Irving T C, Maughan D W

机构信息

Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, Illinois 60616, USA.

出版信息

Biophys J. 2000 May;78(5):2511-5. doi: 10.1016/S0006-3495(00)76796-8.

Abstract

Small-angle x-ray diffraction from isolated muscle preparations is commonly used to obtain time-resolved structural information during contraction. We extended this technique to the thoracic flight muscles of living fruit flies, at rest and during tethered flight. Precise measurements at 1-ms time resolution indicate that the myofilament lattice spacing does not change significantly during oscillatory contraction. This result is consistent with the notion that a net radial force maintains the thick filaments at an equilibrium interfilament spacing of approximately 56 nm throughout the contractile cycle. Transgenic flies with amino-acid substitutions in the conserved phosphorylation site of the myosin regulatory light chain (RLC) exhibit structural abnormalities that can explain their flight impairment. The I(20)/I(10) equatorial intensity ratio of the mutant fly is 35% less than that of wild type, supporting the hypothesis that myosin heads that lack phosphorylated RLC remain close to the thick filament backbone. This new experimental system facilitates investigation of the relation between molecular structure and muscle function in living organisms.

摘要

从小片分离肌肉制剂进行的小角X射线衍射常用于获取收缩过程中的时间分辨结构信息。我们将此技术扩展到了处于静止状态和系留飞行状态下的活体果蝇的胸部飞行肌肉。以1毫秒时间分辨率进行的精确测量表明,在振荡收缩过程中肌丝晶格间距没有显著变化。这一结果与以下观点一致,即在整个收缩周期中,净径向力将粗肌丝维持在约56纳米的平衡丝间间距。在肌球蛋白调节轻链(RLC)保守磷酸化位点具有氨基酸替代的转基因果蝇表现出结构异常,这可以解释它们的飞行障碍。突变果蝇的I(20)/I(10)赤道强度比比野生型低35%,支持了缺乏磷酸化RLC的肌球蛋白头部仍靠近粗肌丝主干的假说。这个新的实验系统有助于研究活生物体中分子结构与肌肉功能之间的关系。

相似文献

1
In vivo x-ray diffraction of indirect flight muscle from Drosophila melanogaster.
Biophys J. 2000 May;78(5):2511-5. doi: 10.1016/S0006-3495(00)76796-8.
2
Phosphorylation-dependent power output of transgenic flies: an integrated study.
Biophys J. 1997 Dec;73(6):3122-34. doi: 10.1016/S0006-3495(97)78338-3.
4
Nature's strategy for optimizing power generation in insect flight muscle.
Adv Exp Med Biol. 2005;565:157-66; discussion 167, 371-7. doi: 10.1007/0-387-24990-7_12.
5
Molecular dynamics of cyclically contracting insect flight muscle in vivo.
Nature. 2005 Jan 20;433(7023):330-4. doi: 10.1038/nature03230.
6
X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
Biophys J. 1994 Dec;67(6):2422-35. doi: 10.1016/S0006-3495(94)80729-5.

引用本文的文献

2
Nanometer scale difference in myofilament lattice structure of muscle alters muscle function in a spatially explicit model.
PLoS Comput Biol. 2025 Apr 7;21(4):e1012862. doi: 10.1371/journal.pcbi.1012862. eCollection 2025 Apr.
5
Structure of the Flight Muscle Thick Filament from the Bumble Bee, , at 6 Å Resolution.
Int J Mol Sci. 2022 Dec 26;24(1):377. doi: 10.3390/ijms24010377.
6
Effect of Myosin Isoforms on Cardiac Muscle Twitch of Mice, Rats and Humans.
Int J Mol Sci. 2022 Jan 20;23(3):1135. doi: 10.3390/ijms23031135.
8
A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice.
Biophys J. 2021 Sep 21;120(18):4079-4090. doi: 10.1016/j.bpj.2021.08.006. Epub 2021 Aug 10.
9
Mandibular muscle troponin of the Florida carpenter ant Camponotus floridanus: extending our insights into invertebrate Ca regulation.
J Muscle Res Cell Motil. 2021 Jun;42(2):399-417. doi: 10.1007/s10974-021-09606-w. Epub 2021 Jul 13.

本文引用的文献

1
X-ray diffraction studies on the large-scale molecular structure of insect muscle.
J Mol Biol. 1961 Oct;3:618-33. doi: 10.1016/s0022-2836(61)80025-9.
2
An Integrated View of Insect Flight Muscle: Genes, Motor Molecules, and Motion.
News Physiol Sci. 1999 Jun;14:87-92. doi: 10.1152/physiologyonline.1999.14.3.87.
3
The filament lattice of striated muscle.
Physiol Rev. 1998 Apr;78(2):359-91. doi: 10.1152/physrev.1998.78.2.359.
4
X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle.
Biophys J. 1998 Mar;74(3):1439-51. doi: 10.1016/S0006-3495(98)77856-7.
5
Phosphorylation-dependent power output of transgenic flies: an integrated study.
Biophys J. 1997 Dec;73(6):3122-34. doi: 10.1016/S0006-3495(97)78338-3.
6
In vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis.
J Exp Biol. 1996 Dec;199(Pt 12):2767-74. doi: 10.1242/jeb.199.12.2767.
7
Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments.
Biophys J. 1996 Aug;71(2):898-907. doi: 10.1016/S0006-3495(96)79293-7.
10
Low-angle x-ray diffraction studies of living striated muscle during contraction.
J Mol Biol. 1967 Apr 14;25(1):31-45. doi: 10.1016/0022-2836(67)90277-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验