Suppr超能文献

人工语法学习中的迁移基础。

The basis of transfer in artificial grammar learning.

作者信息

Gomez R L, Gerken L, Schvaneveldt R W

机构信息

University of Arizona, Tucson, USA.

出版信息

Mem Cognit. 2000 Mar;28(2):253-63. doi: 10.3758/bf03213804.

Abstract

In two experiments, we examined the extent to which knowledge of sequential dependencies and/or patterns of repeating elements is used during transfer in artificial grammar learning. According to one view of transfer, learners abstract the grammar's sequential dependencies and then learn a mapping to new vocabulary at test (Dienes, Altmann, & Gao, 1999). Elements that are repeated have no special status on this view, and so a logical prediction is that learners should transfer as well after exposure to a grammar without repetitions as after exposure to a grammar with them. On another view, repetition structure is the very basis of transfer (Brooks & Vokey, 1991; Mathews & Roussel, 1997). Learners were trained on grammars with or without repeating elements to test these competing views. Learners demonstrated considerable knowledge of sequential dependencies in their training vocabulary but did not use such knowledge to transfer to a new vocabulary. Transfer only occurred in the presence of repetition structure, demonstrating this to be the basis of transfer.

摘要

在两项实验中,我们研究了在人工语法学习的迁移过程中,序列依赖性知识和/或重复元素模式的运用程度。根据一种迁移观点,学习者提取语法的序列依赖性,然后在测试时学习与新词汇的映射关系(迪内斯、阿尔特曼和高,1999)。在这种观点下,重复的元素没有特殊地位,因此一个合理的预测是,学习者在接触没有重复元素的语法后和接触有重复元素的语法后,迁移效果应该一样好。另一种观点认为,重复结构是迁移的基础(布鲁克斯和沃基,1991;马修斯和鲁塞尔,1997)。我们让学习者接受有或没有重复元素的语法训练,以检验这些相互竞争的观点。学习者在训练词汇中表现出了相当多的序列依赖性知识,但并没有利用这些知识迁移到新词汇上。只有在存在重复结构的情况下才会发生迁移,这表明重复结构是迁移的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验