Suppr超能文献

手部对传递至手部的振动频率的急性血管反应。

Acute vascular responses to the frequency of vibration transmitted to the hand.

作者信息

Bovenzi M, Lindsell C J, Griffin M J

机构信息

Institute of Occupational Medicine, Trieste General Hospitals, University of Trieste, Trieste 34129, Italy.

出版信息

Occup Environ Med. 2000 Jun;57(6):422-30. doi: 10.1136/oem.57.6.422.

Abstract

OBJECTIVES

To investigate the acute effects of the frequency of hand transmitted vibration on finger circulation. A further aim was to investigate whether the frequency weighting assumed in current standards for hand transmitted vibration reflects the haemodynamic changes which occur in the fingers exposed to vibration with different frequencies but with the same frequency weighted acceleration magnitude.

METHODS

Finger skin temperature (FST) and finger blood flow (FBF) were measured in the middle fingers of both hands of 10 healthy men. With a static load of 10 N, the right hand was exposed for 15 minutes to the following root mean square (rms) acceleration magnitudes and frequencies of vertical vibration: 5.5 m/s(2) at 16 Hz; 11 m/s(2) at 31.5 Hz; 22 m/s(2) at 63 Hz; 44 m/s(2) at 125 Hz; and 88 m/s(2) at 250 Hz. These exposures to vibration produce the same frequency weighted acceleration magnitude (5.5 m/s(2) rms) according to the frequency weighting included in the international standard ISO 5349. A control condition consisted of exposure to the static load only. Finger circulation was measured before application of the vibration and static load and at fixed intervals during exposure to vibration and a 45 minute recovery period.

RESULTS

No significant changes in finger circulation were found with only the static load. The FST did not change significantly during or after acute exposure to vibration. In the vibrated right finger, exposures to vibration with frequencies of 31. 5-250 Hz provoked a greater reduction in FBF than did vibration of 16 Hz or the static load only. In the non-vibrated left finger, the FBF measured with vibration at each frequency of 63-250 Hz was significantly lower than that measured with static load only. The reduction in FBF during exposure to vibration with any frequency was stronger in the vibrated finger than in the non-vibrated finger. In both fingers, there was a progressive decrease in FBF after the end of exposure to vibration with frequencies of 31.5-250 Hz. The higher the frequency of vibration, the stronger the decrease in FBF in both fingers during recovery.

CONCLUSIONS

Acute exposures to vibration with equal frequency weighted magnitude reduce the FBF in both vibrated and non-vibrated fingers for frequencies between 31.5 and 250 Hz. The extent of digital vasoconstriction after exposure to vibration increases with increasing frequency. The frequency weighting given in current standards tends to overestimate the vasoconstriction associated with acute exposures to vibration frequencies around 16 Hz.

摘要

目的

研究手部传递振动频率对手指血液循环的急性影响。另一个目的是研究当前手部传递振动标准中所采用的频率加权是否反映了在暴露于不同频率但频率加权加速度大小相同的振动环境下手指所发生的血液动力学变化。

方法

对10名健康男性双手的中指测量手指皮肤温度(FST)和手指血流量(FBF)。在10 N的静态负荷下,右手暴露于以下均方根(rms)加速度大小和垂直振动频率的环境中15分钟:16 Hz时为5.5 m/s²;31.5 Hz时为11 m/s²;63 Hz时为22 m/s²;125 Hz时为44 m/s²;250 Hz时为88 m/s²。根据国际标准ISO 5349中的频率加权,这些振动暴露产生相同的频率加权加速度大小(5.5 m/s² rms)。对照条件仅包括暴露于静态负荷。在施加振动和静态负荷之前、在振动暴露期间的固定间隔以及45分钟的恢复期内测量手指血液循环。

结果

仅施加静态负荷时,未发现手指血液循环有显著变化。急性暴露于振动期间或之后,FST没有显著变化。在振动的右手手指中,暴露于31.5 - 250 Hz频率的振动比16 Hz的振动或仅静态负荷引起的FBF降低更大。在未振动的左手手指中,在63 - 250 Hz的每个频率下测量的FBF均显著低于仅用静态负荷测量的值。在暴露于任何频率的振动期间,振动手指的FBF降低比未振动手指更强。在两个手指中,在暴露于31.5 - 250 Hz频率的振动结束后,FBF都逐渐降低。振动频率越高,恢复期间两个手指的FBF降低越强。

结论

对于31.5至250 Hz的频率,以相等频率加权大小急性暴露于振动会降低振动和未振动手指的FBF。暴露于振动后手指血管收缩的程度随频率增加而增加。当前标准中给出的频率加权往往高估了与急性暴露于16 Hz左右振动频率相关的血管收缩。

相似文献

1
Acute vascular responses to the frequency of vibration transmitted to the hand.
Occup Environ Med. 2000 Jun;57(6):422-30. doi: 10.1136/oem.57.6.422.
4
Acute effects of vibration on digital circulatory function in healthy men.
Occup Environ Med. 1995 Dec;52(12):834-41. doi: 10.1136/oem.52.12.834.
5
Magnitude of acute exposures to vibration and finger circulation.
Scand J Work Environ Health. 1999 Jun;25(3):278-84. doi: 10.5271/sjweh.435.
6
Duration of acute exposures to vibration and finger circulation.
Scand J Work Environ Health. 1998 Apr;24(2):130-7. doi: 10.5271/sjweh.290.
8
Acute effects of continuous and intermittent vibration on finger circulation.
Int Arch Occup Environ Health. 2004 May;77(4):255-63. doi: 10.1007/s00420-004-0507-4. Epub 2004 Mar 18.
9
Effect of the magnitude and frequency of hand-transmitted vibration on finger blood flow during and after exposure to vibration.
Int Arch Occup Environ Health. 2009 Oct;82(9):1151-62. doi: 10.1007/s00420-009-0413-x. Epub 2009 Mar 24.
10
Acute effects of force and vibration on finger blood flow.
Occup Environ Med. 2006 Feb;63(2):84-91. doi: 10.1136/oem.2004.019703.

引用本文的文献

2
Understanding intracranial aneurysm sounds via high-fidelity fluid-structure-interaction modelling.
Commun Med (Lond). 2023 Nov 9;3(1):163. doi: 10.1038/s43856-023-00396-5.
3
Relation of digital arterial dysfunction to alternative frequency weightings of hand-transmitted vibration.
Ind Health. 2024 Feb 9;62(1):32-38. doi: 10.2486/indhealth.2023-0023. Epub 2023 May 20.
4
A Review of Hand-Arm Vibration Studies Conducted by US NIOSH since 2000.
Vibration. 2021 Jun 15;4(2):482-528. doi: 10.3390/vibration4020030.
5
Frequency-dependent changes in mitochondrial number and generation of reactive oxygen species in a rat model of vibration-induced injury.
J Toxicol Environ Health A. 2020;83(1):20-35. doi: 10.1080/15287394.2020.1718043. Epub 2020 Jan 23.
6
Health effects associated with occupational exposure to hand-arm or whole body vibration.
J Toxicol Environ Health B Crit Rev. 2018;21(5):320-334. doi: 10.1080/10937404.2018.1557576. Epub 2018 Dec 25.
8
Risk assessment of vascular disorders by a supplementary hand-arm vascular weighting of hand-transmitted vibration.
Int Arch Occup Environ Health. 2019 Jan;92(1):129-139. doi: 10.1007/s00420-018-1363-y. Epub 2018 Oct 1.
9
Skin temperature responses to hand-arm vibration in cold and thermoneutral ambient temperatures.
Ind Health. 2018 Nov 21;56(6):545-552. doi: 10.2486/indhealth.2018-0013. Epub 2018 Jul 3.
10
Vertebral artery dissection following a posterior cervical foraminotomy.
J Surg Case Rep. 2017 Feb 8;2017(2):rjx014. doi: 10.1093/jscr/rjx014. eCollection 2017 Feb.

本文引用的文献

1
Methods for the investigation of peripheral blood flow.
Br Med Bull. 1963 May;19:101-9. doi: 10.1093/oxfordjournals.bmb.a070026.
2
Magnitude of acute exposures to vibration and finger circulation.
Scand J Work Environ Health. 1999 Jun;25(3):278-84. doi: 10.5271/sjweh.435.
3
Duration of acute exposures to vibration and finger circulation.
Scand J Work Environ Health. 1998 Apr;24(2):130-7. doi: 10.5271/sjweh.290.
5
Acute effects of vibration on peripheral blood flow in healthy subjects.
Occup Environ Med. 1996 Oct;53(10):663-9. doi: 10.1136/oem.53.10.663.
6
Acute effects of vibration on digital circulatory function in healthy men.
Occup Environ Med. 1995 Dec;52(12):834-41. doi: 10.1136/oem.52.12.834.
7
Vibration aftereffects on vasoconstrictor response to cold in the normal finger.
Eur J Appl Physiol Occup Physiol. 1993;66(3):246-8. doi: 10.1007/BF00235101.
8
The effect of vibration on digital blood flow.
Br J Surg. 1980 Oct;67(10):708-10. doi: 10.1002/bjs.1800671009.
10
Vibration frequencies and amplitudes in the aetiology of traumatic vasospastic disease.
Lancet. 1973 Apr 14;1(7807):791-4. doi: 10.1016/s0140-6736(73)90598-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验