Suppr超能文献

大脑细胞外空间中钾离子的空间缓冲作用。

Spatial buffering of potassium ions in brain extracellular space.

作者信息

Chen K C, Nicholson C

机构信息

Department of Physiology and Neuroscience, New York University Medical School, New York, NY 10016, USA.

出版信息

Biophys J. 2000 Jun;78(6):2776-97. doi: 10.1016/S0006-3495(00)76822-6.

Abstract

It has long been assumed that one important mechanism for the dissipation of local potassium gradients in the brain extracellular space is the so-called spatial buffer, generally associated with glial cells. To date, however, there has been no analytical description of the characteristic patterns of K(+) clearance mediated by such a mechanism. This study reanalyzed a mathematical model of Gardner-Medwin (1983, J. Physiol. (Lond.). 335:393-426) that had previously been solved numerically. Under suitable approximations, the transient solutions for the potassium concentrations and the corresponding membrane potentials of glial cells in a finite, parallel domain were derived. The analytic results were substantiated by numerical simulations of a detailed two-compartment model. This simulation explored the dependence of spatial buffer current and extracellular K(+) on the distribution of inward rectifier K(+) channels in the glial endfoot and nonendfoot membranes, the glial geometric length, and the effect of passive KCl uptake. Regarding the glial cells as an equivalent leaky cable, the analyses indicated that a maximum endfoot current occurs when the glial geometric length is equal to the corresponding electrotonic space constant. Consequently, a long glial process is unsuitable for spatial buffering, unless the axial space constant can match the length of the process. Finally, this study discussed whether the spatial buffer mechanism is able to efficiently transport K(+) over distances of more than several glial space constants.

摘要

长期以来,人们一直认为,脑细胞外空间局部钾离子梯度消散的一个重要机制是所谓的空间缓冲,这通常与神经胶质细胞有关。然而,迄今为止,尚未有对这种机制介导的钾离子清除特征模式的分析描述。本研究重新分析了Gardner-Medwin(1983年,《生理学杂志》(伦敦)。335:393 - 426)的一个数学模型,该模型此前已通过数值方法求解。在适当的近似条件下,推导了有限平行域中钾离子浓度和神经胶质细胞相应膜电位的瞬态解。通过详细的双室模型的数值模拟证实了分析结果。该模拟研究了空间缓冲电流和细胞外钾离子对神经胶质终足和非终足膜中内向整流钾离子通道分布、神经胶质几何长度以及被动氯化钾摄取效应的依赖性。将神经胶质细胞视为等效的漏电电缆,分析表明,当神经胶质几何长度等于相应的电紧张空间常数时,会出现最大终足电流。因此,长的神经胶质突起不适合进行空间缓冲,除非轴向空间常数能够与突起长度相匹配。最后,本研究讨论了空间缓冲机制是否能够在超过几个神经胶质空间常数的距离上有效地运输钾离子。

相似文献

4
Potassium buffering in the central nervous system.中枢神经系统中的钾缓冲
Neuroscience. 2004;129(4):1045-56. doi: 10.1016/j.neuroscience.2004.06.008.
7
[Potassium channels in glial cells].[神经胶质细胞中的钾通道]
Nihon Yakurigaku Zasshi. 1997 Mar;109(3):103-10.

引用本文的文献

6

本文引用的文献

1
Potassium accumulation in muscle and associated changes.肌肉中的钾蓄积及相关变化。
J Physiol. 1941 Aug 11;100(1):1-63. doi: 10.1113/jphysiol.1941.sp003922.
4
Extracellular space structure revealed by diffusion analysis.通过扩散分析揭示的细胞外空间结构
Trends Neurosci. 1998 May;21(5):207-15. doi: 10.1016/s0166-2236(98)01261-2.
5
Potassium homeostasis and glial energy metabolism.钾离子稳态与神经胶质细胞能量代谢。
Glia. 1997 Sep;21(1):46-55. doi: 10.1002/(sici)1098-1136(199709)21:1<46::aid-glia5>3.0.co;2-#.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验