Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
Sci Rep. 2023 Jul 31;13(1):12405. doi: 10.1038/s41598-023-38938-5.
Recent studies have linked spreading depolarization (SD, an electro-chemical wave in the brain following stroke, migraine, traumatic brain injury, and more) with increase in cerebrospinal fluid (CSF) flow through the perivascular spaces (PVSs, annular channels lining the brain vasculature). We develop a novel computational model that couples SD and CSF flow. We first use high order numerical simulations to solve a system of physiologically realistic reaction-diffusion equations which govern the spatiotemporal dynamics of ions in the extracellular and intracellular spaces of the brain cortex during SD. We then couple the SD wave with a 1D CSF flow model that captures the change in cross-sectional area, pressure, and volume flow rate through the PVSs. The coupling is modelled using an empirical relationship between the excess potassium ion concentration in the extracellular space following SD and the vessel radius. We find that the CSF volumetric flow rate depends intricately on the length and width of the PVS, as well as the vessel radius and the angle of incidence of the SD wave. We derive analytical expressions for pressure and volumetric flow rates of CSF through the PVS for a given SD wave and quantify CSF flow variations when two SD waves collide. Our numerical approach is very general and could be extended in the future to obtain novel, quantitative insights into how CSF flow in the brain couples with slow waves, functional hyperemia, seizures, or externally applied neural stimulations.
最近的研究将扩散性去极化(SD,中风、偏头痛、创伤性脑损伤等之后大脑中的电化学波)与脑脊髓液(CSF)通过血管周围空间(PVS,沿大脑血管排列的环形通道)的流动增加联系起来。我们开发了一种新的计算模型,将 SD 和 CSF 流动耦合起来。我们首先使用高阶数值模拟来求解一组生理上逼真的反应扩散方程,这些方程控制了 SD 期间大脑皮质细胞外和细胞内空间中离子的时空动力学。然后,我们将 SD 波与 1D CSF 流动模型耦合,该模型捕获了 PVS 中横截面积、压力和体积流量的变化。通过 SD 后细胞外空间中多余钾离子浓度与血管半径之间的经验关系来模拟耦合。我们发现 CSF 体积流量率与 PVS 的长度和宽度以及血管半径和 SD 波的入射角错综复杂地相关。我们为给定的 SD 波推导了通过 PVS 的 CSF 压力和体积流量率的解析表达式,并量化了当两个 SD 波碰撞时 CSF 流动的变化。我们的数值方法非常通用,将来可以扩展以获得关于 CSF 如何与慢波、功能性充血、癫痫发作或外部施加的神经刺激耦合的新的、定量的见解。