Seitz B, Langenbucher A
Department of Ophthalmology, University of Erlangen-Nurnberg, Germany.
J Refract Surg. 2000 May-Jun;16(3):349-61. doi: 10.3928/1081-597X-20000501-09.
The purpose of this review article is to discuss the major reasons for postoperative hyperopia after cataract surgery following radial keratotomy (RK) and photorefractive keratectomy (PRK) and to illustrate potential methods for improvement of intraocular lens (IOL) power prediction after keratorefractive surgery based on exemplary model calculations.
We previously performed model calculations in eyes after PRK for myopia (-1.50 to -8.00 D, mean -5.40 +/- 1.90 D) using keratometry readings as measured by the Zeiss keratometer and the TMS-1 topography unit and as calculated using the "clinical history method" (spherical equivalent refraction change) and change in anterior surface keratometry readings.
We found that after PRK, mean measured keratometry readings were significantly greater than respective calculated values considering the preoperative to postoperative change of anterior corneal surface (P < .001), which itself was significantly greater than calculated keratometry readings considering the preoperative to postoperative change of spherical equivalent refraction (P < .001). IOL power underestimation correlated significantly with the difference between preoperative and postoperative spherical equivalent refraction (P = .001).
For correct assessment of keratometric readings to be entered into more than one modern third-generation IOL power calculation formula (but not a regression formula), the clinical history method should be applied whenever refraction and keratometric diopters before the keratorefractive procedure are available to the cataract surgeon. If preoperative keratometric diopters and refraction are not known, average central power on the postoperative videokeratograph may be used after RK, but refined calculation of keratometric diopters from radius of anterior and posterior corneal surface should be used after PRK and/or LASIK.
这篇综述文章的目的是探讨放射状角膜切开术(RK)和准分子激光原位角膜磨镶术(PRK)后白内障手术出现术后远视的主要原因,并基于示例性模型计算说明改善角膜屈光手术后人工晶状体(IOL)屈光度预测的潜在方法。
我们之前使用蔡司角膜曲率计和TMS-1地形测量仪测量的角膜曲率读数,以及使用“临床病史法”(球镜等效屈光变化)和前表面角膜曲率读数变化计算得到的结果,对PRK治疗近视(-1.50至-8.00 D,平均-5.40 +/- 1.90 D)后的眼睛进行了模型计算。
我们发现,PRK术后,考虑到术前至术后前角膜表面的变化,平均测量的角膜曲率读数显著大于各自的计算值(P <.001),而考虑到术前至术后球镜等效屈光的变化,其本身显著大于计算的角膜曲率读数(P <.001)。IOL屈光度低估与术前和术后球镜等效屈光的差异显著相关(P =.001)。
为了正确评估输入到不止一种现代第三代IOL屈光度计算公式(但不是回归公式)中的角膜曲率读数,只要白内障手术医生能够获得角膜屈光手术前的屈光和角膜曲率屈光度,就应采用临床病史法。如果术前角膜曲率屈光度和屈光未知,RK术后可使用术后角膜地形图上的平均中央屈光力,但PRK和/或准分子激光原位角膜磨镶术(LASIK)后应使用根据前后角膜表面半径精确计算的角膜曲率屈光度。