Suppr超能文献

多目标和多目标优化:药物设计的现状与未来

Multi-and many-objective optimization: present and future in drug design.

作者信息

Angelo Jaqueline S, Guedes Isabella A, Barbosa Helio J C, Dardenne Laurent E

机构信息

Coordenação de Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil.

出版信息

Front Chem. 2023 Dec 18;11:1288626. doi: 10.3389/fchem.2023.1288626. eCollection 2023.

Abstract

Drug Design (dnDD) aims to create new molecules that satisfy multiple conflicting objectives. Since several desired properties can be considered in the optimization process, dnDD is naturally categorized as a many-objective optimization problem (ManyOOP), where more than three objectives must be simultaneously optimized. However, a large number of objectives typically pose several challenges that affect the choice and the design of optimization methodologies. Herein, we cover the application of multi- and many-objective optimization methods, particularly those based on Evolutionary Computation and Machine Learning techniques, to enlighten their potential application in dnDD. Additionally, we comprehensively analyze how molecular properties used in the optimization process are applied as either objectives or constraints to the problem. Finally, we discuss future research in many-objective optimization for dnDD, highlighting two important possible impacts: i) its integration with the development of multi-target approaches to accelerate the discovery of innovative and more efficacious drug therapies and ii) its role as a catalyst for new developments in more fundamental and general methodological frameworks in the field.

摘要

药物设计(dnDD)旨在创建满足多个相互冲突目标的新分子。由于在优化过程中可以考虑多种期望的特性,dnDD自然地被归类为多目标优化问题(ManyOOP),其中必须同时优化三个以上的目标。然而,大量目标通常会带来一些挑战,这些挑战会影响优化方法的选择和设计。在此,我们探讨多目标和多目标优化方法的应用,特别是基于进化计算和机器学习技术的方法,以阐明它们在dnDD中的潜在应用。此外,我们全面分析了优化过程中使用的分子特性如何作为问题的目标或约束来应用。最后,我们讨论了dnDD多目标优化的未来研究,强调了两个重要的可能影响:i)它与多靶点方法开发的整合,以加速创新和更有效药物疗法的发现;ii)它作为该领域更基础和通用方法框架新发展的催化剂的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74eb/10773868/491a76fb7997/fchem-11-1288626-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验