Suppr超能文献

大肠杆菌非趋化性CheZ突变体的分离与鉴定。

Isolation and characterization of nonchemotactic CheZ mutants of Escherichia coli.

作者信息

Boesch K C, Silversmith R E, Bourret R B

机构信息

Department of Microbiology & Immunology, University of North Carolina, Chapel Hill 27599-7290, USA.

出版信息

J Bacteriol. 2000 Jun;182(12):3544-52. doi: 10.1128/JB.182.12.3544-3552.2000.

Abstract

The Escherichia coli CheZ protein stimulates dephosphorylation of CheY, a response regulator in the chemotaxis signal transduction pathway, by an unknown mechanism. Genetic analysis of CheZ has lagged behind biochemical and biophysical characterization. To identify putative regions of functional importance in CheZ, we subjected cheZ to random mutagenesis and isolated 107 nonchemotactic CheZ mutants. Missense mutations clustered in six regions of cheZ, whereas nonsense and frameshift mutations were scattered reasonably uniformly across the gene. Intragenic complementation experiments showed restoration of swarming activity when compatible plasmids containing genes for the truncated CheZ(1-189) peptide and either CheZA65V, CheZL90S, or CheZD143G were both present, implying the existence of at least two independent functional domains in each chain of the CheZ dimer. Six mutant CheZ proteins, one from each cluster of loss-of-function missense mutations, were purified and characterized biochemically. All of the tested mutant proteins were defective in their ability to dephosphorylate CheY-P, with activities ranging from 0.45 to 16% of that of wild-type CheZ. There was good correlation between the phosphatase activity of CheZ and the ability to form large chemically cross-linked complexes with CheY in the presence of the CheY phosphodonor acetyl phosphate. In consideration of both the genetic and biochemical data, the most severe functional impairments in this set of CheZ mutants seemed to be concentrated in regions which are located in a proposed large N-terminal domain of the CheZ protein.

摘要

大肠杆菌CheZ蛋白可通过未知机制刺激趋化信号转导途径中的应答调节因子CheY去磷酸化。对CheZ的遗传学分析落后于其生化和生物物理特性研究。为了确定CheZ中假定的功能重要区域,我们对cheZ进行了随机诱变,并分离出107个非趋化性的CheZ突变体。错义突变集中在cheZ的六个区域,而无义突变和移码突变则相对均匀地分布在整个基因中。基因内互补实验表明,当同时存在含有截短的CheZ(1-189)肽基因以及CheZA65V、CheZL90S或CheZD143G的相容质粒时,群体游动活性得以恢复,这意味着CheZ二聚体的每条链中至少存在两个独立的功能结构域。从每个功能丧失型错义突变簇中选取一个,纯化并对六个突变型CheZ蛋白进行了生化特性分析。所有测试的突变蛋白在使CheY-P去磷酸化的能力上均存在缺陷,其活性范围为野生型CheZ的0.45%至16%。在存在CheY磷酸供体乙酰磷酸的情况下,CheZ的磷酸酶活性与与CheY形成大型化学交联复合物的能力之间存在良好的相关性。综合考虑遗传和生化数据,这组CheZ突变体中最严重的功能损伤似乎集中在CheZ蛋白假定的大N端结构域所在的区域。

相似文献

1
Isolation and characterization of nonchemotactic CheZ mutants of Escherichia coli.
J Bacteriol. 2000 Jun;182(12):3544-52. doi: 10.1128/JB.182.12.3544-3552.2000.
4
CheZ mutants with enhanced ability to dephosphorylate CheY, the response regulator in bacterial chemotaxis.
Biochim Biophys Acta. 1993 Oct 6;1202(2):297-304. doi: 10.1016/0167-4838(93)90019-n.
6
Mutations in the chemotactic response regulator, CheY, that confer resistance to the phosphatase activity of CheZ.
Mol Microbiol. 1995 Mar;15(6):1069-79. doi: 10.1111/j.1365-2958.1995.tb02282.x.

引用本文的文献

1
Experimental evolution partially restores functionality of bacterial chemotaxis network with reduced number of components.
PLoS Genet. 2025 Jul 10;21(7):e1011784. doi: 10.1371/journal.pgen.1011784. eCollection 2025 Jul.
2
EnvZ/OmpR Two-Component Signaling: An Archetype System That Can Function Noncanonically.
EcoSal Plus. 2020 Jan;9(1). doi: 10.1128/ecosalplus.ESP-0001-2019.
5
Probing Mechanistic Similarities between Response Regulator Signaling Proteins and Haloacid Dehalogenase Phosphatases.
Biochemistry. 2015 Jun 9;54(22):3514-27. doi: 10.1021/acs.biochem.5b00286. Epub 2015 May 28.
6
Genome annotation of Burkholderia sp. SJ98 with special focus on chemotaxis genes.
PLoS One. 2013 Aug 5;8(8):e70624. doi: 10.1371/journal.pone.0070624. Print 2013.
7
Nonconserved active site residues modulate CheY autophosphorylation kinetics and phosphodonor preference.
Biochemistry. 2013 Apr 2;52(13):2262-73. doi: 10.1021/bi301654m. Epub 2013 Mar 19.
8
The unique paradigm of spirochete motility and chemotaxis.
Annu Rev Microbiol. 2012;66:349-70. doi: 10.1146/annurev-micro-092611-150145.

本文引用的文献

2
Regulation of phosphatase activity in bacterial chemotaxis.
J Mol Biol. 1998 Dec 11;284(4):1191-9. doi: 10.1006/jmbi.1998.2224.
3
Response regulator output in bacterial chemotaxis.
EMBO J. 1998 Aug 3;17(15):4238-48. doi: 10.1093/emboj/17.15.4238.
4
Identification of a chemotaxis gene region from Pseudomonas putida.
FEMS Microbiol Lett. 1998 Feb 15;159(2):267-73. doi: 10.1111/j.1574-6968.1998.tb12871.x.
5
Control of direction of flagellar rotation in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):201-6. doi: 10.1073/pnas.95.1.201.
7
The CheZ-binding surface of CheY overlaps the CheA- and FliM-binding surfaces.
J Biol Chem. 1997 Sep 19;272(38):23758-64. doi: 10.1074/jbc.272.38.23758.
8
Phosphorylating and dephosphorylating protein complexes in bacterial chemotaxis.
J Bacteriol. 1997 Jan;179(1):287-9. doi: 10.1128/jb.179.1.287-289.1997.
9
In vivo and in vitro characterization of Escherichia coli protein CheZ gain- and loss-of-function mutants.
J Bacteriol. 1996 Nov;178(21):6275-80. doi: 10.1128/jb.178.21.6275-6280.1996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验