Bazmi H Z, Hammond J L, Cavalcanti S C, Chu C K, Schinazi R F, Mellors J W
Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Antimicrob Agents Chemother. 2000 Jul;44(7):1783-8. doi: 10.1128/AAC.44.7.1783-1788.2000.
Human immunodeficiency virus type 1 (HIV-1) isolates resistant to (-)-beta-D-dioxolane-guanosine (DXG), a potent and selective nucleoside analog HIV-1 reverse transcriptase (RT) inhibitor, were selected by serial passage of HIV-1(LAI) in increasing drug concentrations (maximum concentration, 30 microM). Two independent selection experiments were performed. Viral isolates for which the DXG median effective concentrations (EC(50)s) increased 7.3- and 12.2-fold were isolated after 13 and 14 passages, respectively. Cloning and DNA sequencing of the RT region from the first resistant isolate identified a K65R mutation (AAA to AGA) in 10 of 10 clones. The role of this mutation in DXG resistance was confirmed by site-specific mutagenesis of HIV-1(LAI). The K65R mutation also conferred greater than threefold cross-resistance to 2',3'-dideoxycytidine, 2', 3'-dideoxyinosine, 2',3'-dideoxy-3'-thiacytidine, 9-(2-phosphonylmethoxyethyl)adenine, 2-amino-6-chloropurine dioxolane, dioxolanyl-5-fluorocytosine, and diaminopurine dioxolane but had only marginal effects on 3'-azido-3'-deoxthymidine (AZT) susceptibility. However, when introduced into a genetic background for AZT resistance (D67N, K70R, T215Y, T219Q), the K65R mutation reversed the AZT resistance. DNA sequencing of RT clones derived from the second resistant isolate identified the L74V mutation, previously reported to cause ddI resistance. The L74V mutation also decreased the AZT resistance when the mutation was introduced into a genetic background for AZT resistance (D67N, K70R, T215Y, T219Q) but to a lesser degree than the K65R mutation did. These findings indicate that DXG and certain 2',3'-dideoxy compounds (e.g., ddI) can select for the same resistance mutations and thus may not be optimal for use in combination. However, the combination of AZT with DXG or its orally bioavailable prodrug (-)-beta-D-2, 6-diaminopurine-dioxolane should be explored because of the suppressive effects of the K65R and L74V mutations on AZT resistance.
通过在不断增加的药物浓度(最大浓度为30 microM)下对HIV-1(LAI)进行连续传代,筛选出了对强效选择性核苷类似物HIV-1逆转录酶(RT)抑制剂(-)-β-D-二氧戊环鸟苷(DXG)耐药的1型人类免疫缺陷病毒(HIV-1)毒株。进行了两项独立的筛选实验。分别在传代13次和14次后,分离出了DXG中位有效浓度(EC50)增加了7.3倍和12.2倍的病毒毒株。对首个耐药毒株的RT区域进行克隆和DNA测序,在10个克隆中有10个鉴定出K65R突变(AAA突变为AGA)。通过对HIV-1(LAI)进行位点特异性诱变,证实了该突变在DXG耐药中的作用。K-65R突变还对2',3'-双脱氧胞苷、2',3'-双脱氧肌苷、2',3'-双脱氧-3'-硫代胞苷、9-(2-膦酰甲氧基乙基)腺嘌呤、2-氨基-6-氯嘌呤二氧戊环、二氧戊环基-5-氟胞嘧啶和二氨基嘌呤二氧戊环产生了超过三倍的交叉耐药性,但对3'-叠氮-3'-脱氧胸苷(AZT)的敏感性影响较小。然而,当将其引入AZT耐药的遗传背景(D67N、K70R、T215Y、T219Q)中时,K65R突变逆转了AZT耐药性。对源自第二个耐药毒株的RT克隆进行DNA测序,鉴定出L74V突变,此前报道该突变会导致对双脱氧肌苷耐药。当将L74V突变引入AZT耐药的遗传背景(D67N、K70R、T215Y、T219Q)中时,也降低了AZT耐药性,但程度小于K65R突变。这些发现表明,DXG和某些2',3'-双脱氧化合物(如双脱氧肌苷)可选择相同的耐药突变,因此可能并非联合使用的最佳选择。然而,由于K65R和L74V突变对AZT耐药性有抑制作用,应探索AZT与DXG或其口服生物利用度高的前药(-)-β-D-2,6-二氨基嘌呤-二氧戊环的联合使用。