Pinzar E, Miyano M, Kanaoka Y, Urade Y, Hayaishi O
Department of Molecular Behavioral Biology and Core Research for Evolutional Science and Technology, Japan Science Technology Corporation, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan.
J Biol Chem. 2000 Oct 6;275(40):31239-44. doi: 10.1074/jbc.M000750200.
Hematopoietic prostaglandin (PG) D synthase (PGDS) is the first identified vertebrate ortholog in the Sigma class of the glutathione S-transferase (GST) family and catalyzes both isomerization of PGH(2) to PGD(2) and conjugation of glutathione to 1-chloro-2, 4-dinitrobenzene. We introduced site-directed mutations of Tyr(8), Arg(14), Trp(104), Lys(112), Tyr(152), Cys(156), Lys(198), and Leu(199), which are presumed to participate in catalysis or PGH(2) substrate binding based on the crystallographic structure. Mutants were analyzed in terms of structure, GST and PGDS activities, and activation of the glutathione thiol group. Of all the mutants, only Y8F, W104I, K112E, and L199F showed minor but substantial differences in their far-UV circular dichroism spectra from the wild-type enzyme. Y8F, R14K/E, and W104I were completely inactive. C156L/Y selectively lost only PGDS activity. K112E reduced GST activity slightly and PGDS activity markedly, whereas K198E caused a selective decrease in PGDS activity and K(m) for glutathione and PGH(2) in the PGDS reaction. No significant changes were observed in the catalytic activities of Y152F and L199F, although their K(m) for glutathione was increased. Using 5,5'-dithiobis(2-nitrobenzoic acid) as an SH-selective agent, we found that only Y8F and R14E/K did not accelerate the reactivity of the glutathione thiol group under the low reactivity condition of pH 5.0. These results indicate that Lys(112), Cys(156), and Lys(198) are involved in the binding of PGH(2); Trp(104) is critical for structural integrity of the catalytic center for GST and PGDS activities; and Tyr(8) and Arg(14) are essential for activation of the thiol group of glutathione.
造血前列腺素(PG)D合酶(PGDS)是在谷胱甘肽S-转移酶(GST)家族西格玛类中首个被鉴定出的脊椎动物直系同源物,它既能催化PGH₂异构化为PGD₂,又能催化谷胱甘肽与1-氯-2,4-二硝基苯结合。我们对酪氨酸(Tyr)8、精氨酸(Arg)14、色氨酸(Trp)104、赖氨酸(Lys)112、酪氨酸152、半胱氨酸(Cys)156、赖氨酸198和亮氨酸(Leu)199进行了定点突变,根据晶体结构推测这些氨基酸参与催化或PGH₂底物结合。对突变体进行了结构、GST和PGDS活性以及谷胱甘肽硫醇基团活化方面的分析。在所有突变体中,只有Y8F、W104I、K112E和L199F在远紫外圆二色光谱中与野生型酶存在微小但显著的差异。Y8F、R14K/E和W104I完全无活性。C156L/Y仅选择性地丧失了PGDS活性。K112E使GST活性略有降低,PGDS活性显著降低,而K198E导致PGDS活性以及PGDS反应中谷胱甘肽和PGH₂的米氏常数(Km)选择性降低。Y152F和L199F的催化活性未观察到显著变化,尽管它们对谷胱甘肽的Km增加了。使用5,5'-二硫代双(2-硝基苯甲酸)作为SH选择性试剂,我们发现只有Y8F和R14E/K在pH 5.0的低反应性条件下不会加速谷胱甘肽硫醇基团的反应性。这些结果表明,赖氨酸112、半胱氨酸156和赖氨酸198参与PGH₂的结合;色氨酸104对于GST和PGDS活性催化中心的结构完整性至关重要;酪氨酸8和精氨酸14对于谷胱甘肽硫醇基团的活化必不可少。