Levinson N
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Mass. 02139.
Proc Natl Acad Sci U S A. 1973 Apr;70(4):985-7. doi: 10.1073/pnas.70.4.985.
The sum, Sigma1(N)n(-8) = zetaN(s), s = sigma + it, is called a section of the Riemann zeta function, zeta(s). Here an asymptotic formula, for large N, giving the location of the zeros of zetaN(s) near s = 1 will be demonstrated. In particular these zeros will lie in sigma < 1. Relationships between the location of the zeros of zetaN(s) and the zeros of zeta(s) were discovered by Turán. The location in sigma < 1 will also be demonstrated directly, without the asymptotic formula, together with results valid also when s - 1 is not small.
和式(\sum_{n = 1}^{N}n^{-s}),其中(s=\sigma+it),被称为黎曼(\zeta)函数(\zeta(s))的一个截段。这里将证明一个关于大(N)时(\zeta_N(s))在(s = 1)附近零点位置的渐近公式。特别地,这些零点将位于(\sigma\lt1)。图兰发现了(\zeta_N(s))的零点位置与(\zeta(s))的零点之间的关系。(\sigma\lt1)中的位置也将直接证明,无需渐近公式,同时还会给出当(s - 1)不小的时候也有效的结果。