Suppr超能文献

二氧化碳浓度升高会引起C4谷物高粱叶片的生化和超微结构变化。

Elevated CO(2) induces biochemical and ultrastructural changes in leaves of the C(4) cereal sorghum.

作者信息

Watling J R, Press M C, Quick W P

机构信息

Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.

出版信息

Plant Physiol. 2000 Jul;123(3):1143-52. doi: 10.1104/pp.123.3.1143.

Abstract

We analyzed the impact of growth at either 350 (ambient) or 700 (elevated) microL L(-1) CO(2) on key elements of the C(4) pathway (photosynthesis, carbon isotope discrimination, and leaf anatomy) using the C(4) cereal sorghum (Sorghum bicolor L. Moench.). Gas-exchange analysis of the CO(2) response of photosynthesis indicated that both carboxylation efficiency and the CO(2) saturated rate of photosynthesis were lower in plants grown at elevated relative to ambient CO(2). This was accompanied by a 49% reduction in the phosphoenolpyruvate carboxylase content of leaves (area basis) in the elevated CO(2)-grown plants, but no change in Rubisco content. Despite the lower phosphoenolpyruvate carboxylase content, there was a 3-fold increase in C isotope discrimination in leaves of plants grown at elevated CO(2) and bundle sheath leakiness was estimated to be 24% and 33%, respectively, for the ambient and elevated CO(2)-grown plants. However, we could detect no difference in quantum yield. The ratio of quantum yield of CO(2) fixation to PSII efficiency was lower in plants grown at elevated CO(2), but only when leaf internal was below 50 microL L(-1). This suggests a reduction in the efficiency of the C(4) cycle when [CO(2)] is low, and also implies increased electron transport to acceptors other than CO(2). Analysis of leaf sections using a transmission electron microscope indicated a 2-fold decrease in the thickness of the bundle sheath cell walls in plants grown at elevated relative to ambient CO(2). These results suggest that significant acclimation to increased CO(2) concentrations occurs in sorghum.

摘要

我们使用C4谷物高粱(Sorghum bicolor L. Moench.)分析了在350(环境)或700(升高)微升/升二氧化碳浓度下生长对C4途径关键要素(光合作用、碳同位素分馏和叶片解剖结构)的影响。对光合作用的二氧化碳响应进行的气体交换分析表明,相对于环境二氧化碳浓度,在升高的二氧化碳浓度下生长的植物,其羧化效率和光合作用的二氧化碳饱和速率均较低。这伴随着在升高的二氧化碳浓度下生长的植物叶片(以面积计)中磷酸烯醇式丙酮酸羧化酶含量降低49%,但核酮糖-1,5-二磷酸羧化酶含量没有变化。尽管磷酸烯醇式丙酮酸羧化酶含量较低,但在升高的二氧化碳浓度下生长的植物叶片中碳同位素分馏增加了3倍,对于在环境和升高的二氧化碳浓度下生长的植物,维管束鞘泄漏率估计分别为24%和33%。然而,我们未检测到量子产率的差异。在升高的二氧化碳浓度下生长的植物中,二氧化碳固定的量子产率与PSII效率的比值较低,但仅当叶片内部二氧化碳浓度低于50微升/升时如此。这表明当[CO2]较低时C4循环效率降低,也意味着电子向除二氧化碳以外的受体的转运增加。使用透射电子显微镜对叶片切片进行分析表明,相对于环境二氧化碳浓度,在升高的二氧化碳浓度下生长的植物中维管束鞘细胞壁厚度降低了2倍。这些结果表明高粱对升高的二氧化碳浓度发生了显著的适应性变化。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验