Suppr超能文献

Binding site analysis of cellulose binding domain CBD(N1) from endoglucanse C of Cellulomonas fimi by site-directed mutagenesis.

作者信息

Kormos J, Johnson P E, Brun E, Tomme P, McIntosh L P, Haynes C A, Kilburn D G

机构信息

Departments of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3.

出版信息

Biochemistry. 2000 Aug 1;39(30):8844-52. doi: 10.1021/bi000607s.

Abstract

Endoglucanase C (CenC), a beta1,4 glucanase from the soil bacterium Cellulomonas fimi, binds to amorphous cellulose via two homologous cellulose binding domains, termed CBD(N1) and CBD(N2). In this work, the contributions of 10 amino acids within the binding cleft of CBD(N1) were evaluated by single site-directed mutations to alanine residues. Each isolated domain containing a single mutation was analyzed for binding to an insoluble amorphous preparation of cellulose, phosphoric acid swollen Avicel (PASA), and to a soluble glucopyranoside polymer, barley beta-glucan. The effect of any given mutation on CBD binding was similar for both substrates, suggesting that the mechanism of binding to soluble and insoluble substrates is the same. Tyrosines 19 and 85 were essential for tight binding by CBD(N1) as their replacement by alanine results in affinity decrements of approximately 100-fold on PASA, barley beta-glucan, and soluble cellooligosaccharides. The tertiary structures of unbound Y19A and Y85A were assessed by heteronuclear single quantum coherence (HSQC) spectroscopy. These studies indicated that the structures of both mutants were perturbed but that all perturbations are very near to the site of mutation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验