Xu J, Tseng Y, Wirtz D
Department of Chemical Engineering and Interdepartmental Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
J Biol Chem. 2000 Nov 17;275(46):35886-92. doi: 10.1074/jbc.M002377200.
Mechanical stresses applied to the plasma membrane of an adherent cell induces strain hardening of the cytoskeleton, i.e. the elasticity of the cytoskeleton increases with its deformation. Strain hardening is thought to mediate the transduction of mechanical signals across the plasma membrane through the cytoskeleton. Here, we describe the strain dependence of a model system consisting of actin filaments (F-actin), a major component of the cytoskeleton, and the F-actin cross-linking protein alpha-actinin, which localizes along contractile stress fibers and at focal adhesions. We show that the amplitude and rate of shear deformations regulate the resilience of F-actin networks. At low temperatures, for which the lifetime of binding of alpha-actinin to F-actin is long, F-actin/alpha-actinin networks exhibit strong strain hardening at short time scales and soften at long time scales. For F-actin networks in the absence of alpha-actinin or for F-actin/alpha-actinin networks at high temperatures, strain hardening appears only at very short time scales. We propose a model of strain hardening for F-actin networks, based on both the intrinsic rigidity of F-actin and dynamic topological constraints formed by the cross-linkers located at filaments entanglements. This model offers an explanation for the origin of strain hardening observed when shear stresses are applied against the cellular membrane.
施加于贴壁细胞质膜的机械应力会诱导细胞骨架的应变硬化,即细胞骨架的弹性会随着其变形而增加。应变硬化被认为介导了机械信号通过细胞骨架跨质膜的转导。在这里,我们描述了一个由肌动蛋白丝(F-肌动蛋白)(细胞骨架的主要成分)和F-肌动蛋白交联蛋白α-辅肌动蛋白组成的模型系统的应变依赖性,α-辅肌动蛋白沿着收缩应力纤维和粘着斑定位。我们表明,剪切变形的幅度和速率调节F-肌动蛋白网络的弹性。在低温下,α-辅肌动蛋白与F-肌动蛋白结合的寿命较长,F-肌动蛋白/α-辅肌动蛋白网络在短时间尺度上表现出强烈的应变硬化,而在长时间尺度上软化。对于不存在α-辅肌动蛋白的F-肌动蛋白网络或高温下的F-肌动蛋白/α-辅肌动蛋白网络,应变硬化仅在非常短的时间尺度上出现。我们基于F-肌动蛋白的固有刚性和位于细丝缠结处的交联剂形成的动态拓扑约束,提出了一个F-肌动蛋白网络的应变硬化模型。该模型为当对细胞膜施加剪切应力时观察到的应变硬化的起源提供了解释。