Suppr超能文献

变形虫能爬得多好?

How well can an amoeba climb?

作者信息

Fukui Y, Uyeda T Q, Kitayama C, Inoué S

机构信息

Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611-3008, USA.

出版信息

Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10020-5. doi: 10.1073/pnas.97.18.10020.

Abstract

We report here our efforts to measure the crawling force generated by cells undergoing amoeboid locomotion. In a centrifuge microscope, acceleration was increased until amoebae of Dictyostelium discoideum were "stalled" or no longer able to "climb up." The "apparent weight" of the amoebae at stalling rpm in myosin mutants depended on the presence of myosin II (but not myosins IA and IB) and paralleled the cortical strength of the cells. Surprisingly, however, the cell stalled not only in low-density media as expected but also in media with densities greater than the cell density where the buoyant force should push the amoeba upward. We find that the leading pseudopod is bent under centrifugal force in all stalled amoebae, suggesting that this pseudopod is very dense indeed. This finding also suggests that directional cell locomotion against resistive forces requires a turgid forward-pointing pseudopod, most likely sustained by cortical actomyosin II.

摘要

我们在此报告我们为测量进行阿米巴样运动的细胞所产生的爬行力而做出的努力。在离心显微镜中,不断增加加速度,直到盘基网柄菌的变形虫“停滞”或不再能够“向上攀爬”。在肌球蛋白突变体中,处于停滞转速时变形虫的“表观重量”取决于肌球蛋白II(而非肌球蛋白IA和IB)的存在,并与细胞的皮质强度平行。然而,令人惊讶的是,细胞不仅如预期那样在低密度培养基中停滞,而且在密度大于细胞密度的培养基中也会停滞,在这种情况下浮力应将变形虫向上推。我们发现,在所有停滞的变形虫中,领先伪足在离心力作用下会弯曲,这表明该伪足确实非常致密。这一发现还表明,细胞对抗阻力的定向运动需要一个肿胀的向前伸出的伪足,很可能由皮质肌动球蛋白II维持。

相似文献

1
How well can an amoeba climb?
Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10020-5. doi: 10.1073/pnas.97.18.10020.
2
A mechanical function of myosin II in cell motility.
J Cell Sci. 1995 Jan;108 ( Pt 1):387-93. doi: 10.1242/jcs.108.1.387.
3
Does buckling instability of the pseudopodium limit how well an amoeba can climb?
J Theor Biol. 2011 Feb 21;271(1):202-4. doi: 10.1016/j.jtbi.2010.11.036. Epub 2010 Dec 2.
4
Mutants lacking myosin II cannot resist forces generated during multicellular morphogenesis.
J Cell Sci. 1995 Mar;108 ( Pt 3):1105-15. doi: 10.1242/jcs.108.3.1105.
6
Myosin I is located at the leading edges of locomoting Dictyostelium amoebae.
Nature. 1989 Sep 28;341(6240):328-31. doi: 10.1038/341328a0.
7
Myosin IB null mutants of Dictyostelium exhibit abnormalities in motility.
Cell Motil Cytoskeleton. 1991;20(4):301-15. doi: 10.1002/cm.970200406.
8
Studies of mechanical aspects of amoeboid locomotion.
Blood Cells. 1993;19(2):375-86; discussion 386-8.
9
Mechanistics of amoeboid locomotion: signal to forces.
Cell Biol Int. 2002;26(11):933-44. doi: 10.1006/cbir.2002.0959.
10
Myosin I contributes to the generation of resting cortical tension.
Biophys J. 1999 Aug;77(2):1168-76. doi: 10.1016/s0006-3495(99)76968-7.

引用本文的文献

2
Live-cell imaging under centrifugation characterized the cellular force for nuclear centration in the embryo.
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2402759121. doi: 10.1073/pnas.2402759121. Epub 2024 Oct 16.
5
Distribution of traction forces associated with shape changes during amoeboid cell migration.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3346-9. doi: 10.1109/IEMBS.2009.5333191.
6
Myosin II is essential for the spatiotemporal organization of traction forces during cell motility.
Mol Biol Cell. 2010 Feb 1;21(3):405-17. doi: 10.1091/mbc.e09-08-0703. Epub 2009 Dec 2.
7
Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry.
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13343-8. doi: 10.1073/pnas.0705815104. Epub 2007 Aug 7.
8
The role of myosin II motor activity in distributing myosin asymmetrically and coupling protrusive activity to cell translocation.
Mol Biol Cell. 2006 Oct;17(10):4435-45. doi: 10.1091/mbc.e06-05-0431. Epub 2006 Jul 19.
10
Dictyostelium discoideum adhesion and motility under shear flow: experimental and theoretical approaches.
J Muscle Res Cell Motil. 2002;23(7-8):651-8. doi: 10.1023/a:1024407107588.

本文引用的文献

3
Centrifuge polarizing microscope. I. Rationale, design and instrument performance.
J Microsc. 2001 Mar;201(Pt 3):341-56. doi: 10.1046/j.1365-2818.2001.00850.x.
4
Actin machinery: pushing the envelope.
Curr Opin Cell Biol. 2000 Feb;12(1):104-12. doi: 10.1016/s0955-0674(99)00063-0.
5
Myosin I contributes to the generation of resting cortical tension.
Biophys J. 1999 Aug;77(2):1168-76. doi: 10.1016/s0006-3495(99)76968-7.
7
Separation of propulsive and adhesive traction stresses in locomoting keratocytes.
J Cell Biol. 1999 May 3;145(3):589-604. doi: 10.1083/jcb.145.3.589.
8
Amoeboid movement anchored by eupodia, new actin-rich knobby feet in Dictyostelium.
Cell Motil Cytoskeleton. 1997;36(4):339-54. doi: 10.1002/(SICI)1097-0169(1997)36:4<339::AID-CM4>3.0.CO;2-0.
9
Myosin-based cortical tension in Dictyostelium resolved into heavy and light chain-regulated components.
J Muscle Res Cell Motil. 1996 Apr;17(2):269-74. doi: 10.1007/BF00124248.
10
Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis.
J Cell Biol. 1995 Dec;131(5):1205-21. doi: 10.1083/jcb.131.5.1205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验