Suppr超能文献

酿酒酵母中可阻遏酸性磷酸酶合成的隐性组成型突变的分离与鉴定。

Isolation and characterization of recessive, constitutive mutations for repressible acid phosphatase synthesis in Saccharomyces cerevisiae.

作者信息

Ueda Y, To-E A, Oshima Y

出版信息

J Bacteriol. 1975 Jun;122(3):911-22. doi: 10.1128/jb.122.3.911-922.1975.

Abstract

Two new classes of mutants containing recessive constitutive mutations, phoT and phoU, that affect the repressible acid phosphatase (EC 3.1.3.2) in Saccharomyces cerevisiae were isolated along with many previously known phoR mutants. These loci segregated independently from each other, from the phoS gene, and from another regulatory gene, phoD, that exerts positive control for acid phosphatase synthesis. The phoR and phoU mutations showed the same genetic behavior in the double mutants, which also contained the phoS or phoD mutation. In contrast, the phoT mutation could not suppress the phoS mutation, which caused a loss of enzyme activity. Many mutant alleles of phoR and phoU were found to be temperature sensitive (ts), whereas those of phoT were not. These ts mutants were constitutive at 35 C but severely repressible at 25 C. These facts strongly suggest that both the phoR and phoU genes are cooperatively concerned with the production of the repressor, whereas the phoT gene might be involved in another mechanism distinct from that in which phoR and phoU are involved. No single mutation of phoR, phoT, or phoU result in an enzyme level comparable to that of fully derepressed enzyme activities, and the temperature sensitivity of the ts phoR and ts phoU mutations in such combinations almost disappeared. In addition to these observations, since the ts phoR phoS and ts phoU phoS double mutants showed some enzyme synthesis at 25 C under derepressing conditions, a defect in the ts mutant repressors was strongly suggested, even at 25 C.

摘要

我们分离出了两类含有隐性组成型突变的新突变体,即phoT和phoU,它们会影响酿酒酵母中可阻遏的酸性磷酸酶(EC 3.1.3.2),同时还分离出了许多先前已知的phoR突变体。这些基因座彼此独立分离,也与phoS基因以及另一个对酸性磷酸酶合成起正调控作用的调控基因phoD相互独立分离。phoR和phoU突变在双突变体中表现出相同的遗传行为,这些双突变体中还包含phoS或phoD突变。相比之下,phoT突变无法抑制导致酶活性丧失的phoS突变。发现phoR和phoU的许多突变等位基因是温度敏感型(ts),而phoT的突变等位基因则不是。这些ts突变体在35℃时呈组成型表达,但在25℃时受到严重阻遏。这些事实有力地表明,phoR和phoU基因都与阻遏物的产生协同相关,而phoT基因可能参与了一种与phoR和phoU所涉及的机制不同的机制。phoR、phoT或phoU的单个突变都不会导致酶水平与完全去阻遏的酶活性相当,并且在这种组合中ts phoR和ts phoU突变的温度敏感性几乎消失。除了这些观察结果外,由于ts phoR phoS和ts phoU phoS双突变体在去阻遏条件下于25℃时表现出一些酶合成,因此强烈暗示即使在25℃时ts突变体阻遏物也存在缺陷。

相似文献

2
Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae.
J Bacteriol. 1973 Feb;113(2):727-38. doi: 10.1128/jb.113.2.727-738.1973.
5
Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae.
Mol Gen Genet. 1975 Dec 30;143(1):65-70. doi: 10.1007/BF00269421.
8
Regulation of repressible acid phosphatase by cyclic AMP in Saccharomyces cerevisiae.
Genetics. 1984 Sep;108(1):53-66. doi: 10.1093/genetics/108.1.53.
10
Bacterial alkaline phosphatase clonal variation in some Escherichia coli K-12 phoR mutant strains.
J Bacteriol. 1986 Dec;168(3):1366-71. doi: 10.1128/jb.168.3.1366-1371.1986.

引用本文的文献

1
PiPho85, a cyclin-dependent kinase of Piriformospora indica rescue colonized maize plants grown under salt stress.
World J Microbiol Biotechnol. 2025 Sep 9;41(9):322. doi: 10.1007/s11274-025-04513-5.
2
Pop2 phosphorylation at S39 contributes to the glucose repression of stress response genes, HSP12 and HSP26.
PLoS One. 2019 Apr 11;14(4):e0215064. doi: 10.1371/journal.pone.0215064. eCollection 2019.
3
Vtc5, a Novel Subunit of the Vacuolar Transporter Chaperone Complex, Regulates Polyphosphate Synthesis and Phosphate Homeostasis in Yeast.
J Biol Chem. 2016 Oct 14;291(42):22262-22275. doi: 10.1074/jbc.M116.746784. Epub 2016 Sep 1.
4
Core regulatory components of the PHO pathway are conserved in the methylotrophic yeast Hansenula polymorpha.
Curr Genet. 2016 Aug;62(3):595-605. doi: 10.1007/s00294-016-0565-7. Epub 2016 Jan 21.
5
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae.
Genetics. 2012 Mar;190(3):885-929. doi: 10.1534/genetics.111.133306.
6
The yeast RNA polymerase II-associated factor Iwr1p is involved in the basal and regulated transcription of specific genes.
J Biol Chem. 2009 Oct 16;284(42):28958-67. doi: 10.1074/jbc.M109.012153. Epub 2009 Aug 13.
7
Structure of the Pho85-Pho80 CDK-cyclin complex of the phosphate-responsive signal transduction pathway.
Mol Cell. 2007 Nov 30;28(4):614-23. doi: 10.1016/j.molcel.2007.09.013.
9
A systematic high-throughput screen of a yeast deletion collection for mutants defective in PHO5 regulation.
Genetics. 2005 Apr;169(4):1859-71. doi: 10.1534/genetics.104.038695. Epub 2005 Feb 3.
10
Genetic analysis of chromatin remodeling using budding yeast as a model.
Methods Enzymol. 2004;377:55-60. doi: 10.1016/S0076-6879(03)77002-5.

本文引用的文献

1
Use of snail digestive juice in isolation of yeast spore tetrads.
J Bacteriol. 1959 Aug;78(2):292. doi: 10.1128/jb.78.2.292-292.1959.
2
GENETIC ANALYSIS OF THE PHOSPHATASES IN ASPERGILLUS NIDULANS.
Genet Res. 1965 Feb;6:13-26. doi: 10.1017/s0016672300003943.
3
Acid phosphatase of bakers' yeast: an enzyme of the external cell surface.
Biochemistry. 1963 Jan-Feb;2:126-31. doi: 10.1021/bi00901a022.
4
Properties of two regulating genes for alkaline phosphatase.
J Bacteriol. 1962 Feb;83(2):297-300. doi: 10.1128/jb.83.2.297-300.1962.
5
Genetic control of induction of alkaline phosphatase synthesis in E. coli.
Proc Natl Acad Sci U S A. 1962 Aug;48(8):1398-402. doi: 10.1073/pnas.48.8.1398.
7
Genetic control of repression of alkaline phosphatase in E. coli.
J Mol Biol. 1961 Aug;3:425-38. doi: 10.1016/s0022-2836(61)80055-7.
9
Genetical mutants induced by ethyl methanesulfonate in Saccharomyces.
Can J Genet Cytol. 1965 Sep;7(3):491-9. doi: 10.1139/g65-064.
10
Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae.
Eur J Biochem. 1970 Jan;12(1):31-9. doi: 10.1111/j.1432-1033.1970.tb00817.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验