Suppr超能文献

酿酒酵母中氨基酸、核苷酸和磷酸盐代谢的调节。

Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae.

机构信息

Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.

出版信息

Genetics. 2012 Mar;190(3):885-929. doi: 10.1534/genetics.111.133306.

Abstract

Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.

摘要

自生化分析伊始,酵母一直是研究真核生物代谢调控的先驱模型。在过去的三十年中,强大的酵母遗传学和全基因组方法的结合,为代谢调控提供了更具综合性的视角。从超途径控制到单个基因反应,人们发现了多个层次的调控。已经确定了在感应细胞内外环境中起关键作用的组成型和专用系统,并且越来越意识到它们参与了蛋白质和代谢物在高度调控的细胞内区室化。本文重点介绍了氨基酸、核苷酸和磷酸盐代谢领域的最新进展,并提供了一些说明性示例,展示了酵母细胞如何结合多种机制来实现对多种代谢途径的协调调控。重要的是,已经出现了一些常见的方案,这些方案揭示了各种途径之间保守的机制,例如涉及代谢物感应以及非编码 RNA 或代谢中间产物的转录调控。由于酵母实验系统的显著复杂性,代谢组学和转录组学之间的紧密联系的图景正在变得清晰。

相似文献

1
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae.
Genetics. 2012 Mar;190(3):885-929. doi: 10.1534/genetics.111.133306.
2
Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.
DNA Repair (Amst). 2014 Nov;23:49-58. doi: 10.1016/j.dnarep.2014.07.009. Epub 2014 Aug 2.
3
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2018 Feb 7;82(1). doi: 10.1128/MMBR.00040-17. Print 2018 Jun.
5
Regulation of Amino Acid Transport in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2019 Oct 16;83(4). doi: 10.1128/MMBR.00024-19. Print 2019 Nov 20.
6
Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast.
PLoS Biol. 2008 Dec 23;6(12):2817-30. doi: 10.1371/journal.pbio.0060326.
7
New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae.
FEMS Yeast Res. 2006 Mar;6(2):171-6. doi: 10.1111/j.1567-1364.2006.00036.x.
8
Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae.
FEMS Yeast Res. 2014 Aug;14(5):683-96. doi: 10.1111/1567-1364.12157. Epub 2014 May 8.
9
Mapping condition-dependent regulation of lipid metabolism in Saccharomyces cerevisiae.
G3 (Bethesda). 2013 Nov 6;3(11):1979-95. doi: 10.1534/g3.113.006601.

引用本文的文献

1
Covariation MS uncovers a protein that controls cysteine catabolism.
Nature. 2025 Sep 17. doi: 10.1038/s41586-025-09535-5.
3
Epigenetic regulation of intracellular branched-chain amino acid homeostasis maintains a normal lifespan.
iScience. 2025 Jun 7;28(7):112846. doi: 10.1016/j.isci.2025.112846. eCollection 2025 Jul 18.
4
Uga3 influences nitrogen metabolism in by modulating arginine biosynthesis.
Microb Cell. 2025 Jun 12;12:132-140. doi: 10.15698/mic2025.06.851. eCollection 2025.
7
A dual reporter system for intracellular and extracellular amino acid sensing in budding yeast.
Mol Biol Cell. 2025 May 1;36(5):mr4. doi: 10.1091/mbc.E24-04-0162. Epub 2025 Apr 2.
10
An integrated multiphase dynamic genome-scale model explains batch fermentations led by species of the genus.
mSystems. 2025 Feb 18;10(2):e0161524. doi: 10.1128/msystems.01615-24. Epub 2025 Jan 22.

本文引用的文献

3
Physiological and toxic effects of purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide (AICAR) in yeast.
J Biol Chem. 2011 Sep 2;286(35):30994-31002. doi: 10.1074/jbc.M111.262659. Epub 2011 Jul 12.
4
A phosphodegron controls nutrient-induced proteasomal activation of the signaling protease Ssy5.
Mol Biol Cell. 2011 Aug 1;22(15):2754-65. doi: 10.1091/mbc.E11-04-0282. Epub 2011 Jun 8.
5
Transport activity-dependent intracellular sorting of the yeast general amino acid permease.
Mol Biol Cell. 2011 Jun 1;22(11):1919-29. doi: 10.1091/mbc.E10-10-0800. Epub 2011 Apr 6.
6
Transcription of intergenic DNA deposits nucleosomes on promoter to silence gene expression.
Cell Cycle. 2011 Apr 1;10(7):1021-2. doi: 10.4161/cc.10.7.15167.
7
Amino acid signaling in yeast: activation of Ssy5 protease is associated with its phosphorylation-induced ubiquitylation.
J Biol Chem. 2011 Apr 8;286(14):12006-15. doi: 10.1074/jbc.M110.200592. Epub 2011 Feb 10.
8
A transcriptional activator is part of an SCF ubiquitin ligase to control degradation of its cofactors.
Mol Cell. 2010 Dec 22;40(6):954-64. doi: 10.1016/j.molcel.2010.11.018.
9
Intergenic transcription causes repression by directing nucleosome assembly.
Genes Dev. 2011 Jan 1;25(1):29-40. doi: 10.1101/gad.1975011. Epub 2010 Dec 14.
10
Differential regulation of transcription factors Stp1 and Stp2 in the Ssy1-Ptr3-Ssy5 amino acid sensing pathway.
J Biol Chem. 2011 Feb 11;286(6):4620-31. doi: 10.1074/jbc.M110.195313. Epub 2010 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验