Suppr超能文献

睡眠纺锤波检测中的自联想多层感知器

Autoassociative MLP in sleep spindle detection.

作者信息

Huupponen E, Värri A, Himanen S L, Hasan J, Lehtokangas M, Saarinen J

机构信息

Signal Processing Laboratory, Tampere University of Technology, Finland.

出版信息

J Med Syst. 2000 Jun;24(3):183-93. doi: 10.1023/a:1005543710588.

Abstract

Spindles are one of the most important short-lasting waveforms in sleep EEG. They are the hallmarks of the so-called Stage 2 sleep. Visual spindle scoring is a tedious workload, since there are often a thousand spindles in one all-night recording of some 8 hr. Automated methods for spindle detection typically use some form of fixed spindle amplitude threshold, which is poor with respect to inter-subject variability. In this work a spindle detection system allowing spindle detection without an amplitude threshold was developed. This system can be used for automatic decision making of whether or not a sleep spindle is present in the EEG at a certain point of time. An Autoassociative Multilayer Perceptron (A-MLP) network was employed for the decision making. A novel training procedure was developed to remove inconsistencies from the training data, which was found to improve the system performance significantly.

摘要

纺锤波是睡眠脑电图中最重要的短持续时间波形之一。它们是所谓的睡眠第二阶段的标志。视觉纺锤波评分是一项繁琐的工作,因为在约8小时的整夜记录中通常会有一千个纺锤波。纺锤波检测的自动化方法通常使用某种形式的固定纺锤波幅度阈值,这在个体间变异性方面表现不佳。在这项工作中,开发了一种无需幅度阈值即可进行纺锤波检测的系统。该系统可用于自动判断脑电图在某个时间点是否存在睡眠纺锤波。使用自联想多层感知器(A-MLP)网络进行决策。开发了一种新颖的训练程序来消除训练数据中的不一致性,发现这可显著提高系统性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验