Suppr超能文献

一种基于小波和Teager能量算子的自动睡眠纺锤波检测器。

An automatic sleep spindle detector based on wavelets and the teager energy operator.

作者信息

Ahmed Beena, Redissi Amira, Tafreshi Reza

机构信息

Engineering Faculty, Texas A&M University at Qatar, Doha, Qatar.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2596-9. doi: 10.1109/IEMBS.2009.5335331.

Abstract

Sleep spindles are one of the most important short-lasting rhythmic events occurring in the EEG during Non-Rapid Eye Movement sleep. Their accurate identification in a polysomnographic signal is essential for sleep professionals to help them mark Stage 2 sleep. Visual spindle scoring however is a tedious workload, as there are often a thousand spindles in an all-night recording. In this paper a novel approach for the automatic detection of sleep spindles based upon the Teager Energy Operator and wavelet packets has been presented. The Teager operator was found to accurately enhance periodic activity in epochs of the EEG containing spindles. The wavelet packet transform proved effective in accurately locating spindles in the time-frequency domain. The autocorrelation function of the resultant Teager signal and the wavelet packet energy ratio were used to identify epochs with spindles. These two features were integrated into a spindle detection algorithm which achieved an accuracy of 93.7%.

摘要

睡眠纺锤波是在非快速眼动睡眠期间脑电图(EEG)中出现的最重要的短期节律性事件之一。在多导睡眠图信号中准确识别它们对于睡眠专业人员帮助他们标记睡眠第二阶段至关重要。然而,视觉纺锤波评分是一项繁琐的工作,因为整夜记录中通常有一千个纺锤波。本文提出了一种基于Teager能量算子和小波包的睡眠纺锤波自动检测新方法。发现Teager算子能准确增强包含纺锤波的脑电图时段中的周期性活动。小波包变换被证明在时频域中准确定位纺锤波方面是有效的。所得Teager信号的自相关函数和小波包能量比被用于识别有纺锤波的时段。这两个特征被整合到一个纺锤波检测算法中,该算法的准确率达到了93.7%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验