Van Bocxlaer J F, Clauwaert K M, Lambert W E, Deforce D L, Van den Eeckhout E G, De Leenheer A P
Laboratorium voor Toxicologie, Universiteit Gent, Belgium.
Mass Spectrom Rev. 2000 Jul-Aug;19(4):165-214. doi: 10.1002/1098-2787(200007)19:4<165::AID-MAS1>3.0.CO;2-Y.
Liquid chromatography-mass spectrometry has evolved from a topic of mainly research interest into a routinely usable tool in various application fields. With the advent of new ionization approaches, especially atmospheric pressure, the technique has established itself firmly in many areas of research. Although many applications prove that LC-MS is a valuable complementary analytical tool to GC-MS and has the potential to largely extend the application field of mass spectrometry to hitherto "MS-phobic" molecules, we must recognize that the use of LC-MS in forensic toxicology remains relatively rare. This rarity is all the more surprising because forensic toxicologists find themselves often confronted with the daunting task of actually searching for evidence materials on a scientific basis without any indication of the direction in which to search. Through the years, mass spectrometry, mainly in the GC-MS form, has gained a leading role in the way such quandaries are tackled. The advent of robust, bioanalytically compatible combinations of liquid chromatographic separation with mass spectrometric detection really opens new perspectives in terms of mass spectrometric identification of difficult molecules (e.g., polar metabolites) or biopolymers with toxicological relevance, high throughput, and versatility. Of course, analytical toxicologists are generally mass spectrometry users rather than mass spectrometrists, and this difference certainly explains the slow start of LC-MS in this field. Nevertheless, some valuable applications have been published, and it seems that the introduction of the more universal atmospheric pressure ionization interfaces really has boosted interests. This review presents an overview of what has been realized in forensic toxicological LC-MS. After a short introduction into LC-MS interfacing operational characteristics (or limitations), it covers applications that range from illicit drugs to often abused prescription medicines and some natural poisons. As such, we hope it can act as an appetizer to those involved in forensic toxicology but still hesitating to invest in LC-MS.
液相色谱 - 质谱联用技术已从一个主要受研究关注的领域发展成为在各种应用领域中常规可用的工具。随着新的电离方法的出现,特别是大气压电离方法的出现,该技术已在许多研究领域中稳固确立了自身地位。尽管许多应用证明液相色谱 - 质谱联用是气相色谱 - 质谱联用的一种有价值的互补分析工具,并且有潜力将质谱分析的应用领域大幅扩展到迄今“惧质谱”的分子,但我们必须认识到液相色谱 - 质谱联用在法医毒理学中的应用仍然相对较少。这种稀少更加令人惊讶,因为法医毒理学家常常面临艰巨的任务,即在没有任何搜索方向指示的情况下,实际以科学的方式寻找证据材料。多年来,质谱分析,主要是以气相色谱 - 质谱联用的形式,在解决此类难题方面发挥了主导作用。液相色谱分离与质谱检测的稳健、生物分析兼容组合的出现,确实在质谱鉴定难分析分子(例如极性代谢物)或具有毒理学相关性的生物聚合物、高通量以及多功能性方面开辟了新的前景。当然,分析毒理学家通常是质谱分析的使用者而非质谱专家,这种差异无疑解释了液相色谱 - 质谱联用在该领域起步缓慢的原因。然而,已经发表了一些有价值的应用,而且似乎更通用的大气压电离接口的引入确实激发了人们的兴趣。本综述概述了法医毒理学中液相色谱 - 质谱联用的已实现情况。在简要介绍液相色谱 - 质谱联用接口的操作特性(或局限性)之后,它涵盖了从非法药物到经常被滥用的处方药以及一些天然毒物的应用。因此,我们希望它能成为那些参与法医毒理学但仍犹豫是否投资液相色谱 - 质谱联用技术的人的开胃菜。