Suppr超能文献

Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat.

作者信息

Shangguan ZP, Shao MA, Dyckmans J

机构信息

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Northwest Sci-Tech University of Agriculture and Forestry, Shannxi 712100, Yangling, P.R. China

出版信息

Environ Exp Bot. 2000 Oct 1;44(2):141-149. doi: 10.1016/s0098-8472(00)00064-2.

Abstract

The responses of gas exchange and water use efficiency to nitrogen nutrition for winter wheat were investigated under well-watered and drought conditions. The photosynthetic gas exchange parameters of winter wheat are remarkably improved by water and nitrogen nutrition and the regulative capability of nitrogen nutrition is influenced by water status. The effects of nitrogen nutrition on photosynthetic characteristics and on the limited factors to photosynthesis are not identical under different water status. Intrinsic water use efficiency (WUE(i)) of the plants at the high-N nutrition was decreased by a larger value than that of the plants in the low-N treatment due to a larger decrease in photosynthetic rate than in transpiration rate. Carbon isotope composition of plant material (delta(p)) is increased by the increase of drought intensity. The delta(p) at a given level of C(i)/C(a) is reduced by nitrogen deficiency. Leaf carbon isotope discrimination (Delta) is increased by the increase of nitrogen nutrition and decreased by the increase of drought intensity. Transpirational water use efficiency (WUE(t)) is negatively correlated with Delta in both nitrogen supply treatments and increased with the nitrogen supply.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验