Suppr超能文献

需氧硫酸盐还原途径的代谢工程及其在细胞表面镉沉淀中的应用。

Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface.

作者信息

Wang C L, Maratukulam P D, Lum A M, Clark D S, Keasling J D

机构信息

Department of Chemical Engineering, University of California, Berkeley, California 94720-1462, USA.

出版信息

Appl Environ Microbiol. 2000 Oct;66(10):4497-502. doi: 10.1128/AEM.66.10.4497-4502.2000.

Abstract

The conversion of sulfate to an excess of free sulfide requires stringent reductive conditions. Dissimilatory sulfate reduction is used in nature by sulfate-reducing bacteria for respiration and results in the conversion of sulfate to sulfide. However, this dissimilatory sulfate reduction pathway is inhibited by oxygen and is thus limited to anaerobic environments. As an alternative, we have metabolically engineered a novel aerobic sulfate reduction pathway for the secretion of sulfides. The assimilatory sulfate reduction pathway was redirected to overproduce cysteine, and excess cysteine was converted to sulfide by cysteine desulfhydrase. As a potential application for this pathway, a bacterium was engineered with this pathway and was used to aerobically precipitate cadmium as cadmium sulfide, which was deposited on the cell surface. To maximize sulfide production and cadmium precipitation, the production of cysteine desulfhydrase was modulated to achieve an optimal balance between the production and degradation of cysteine.

摘要

将硫酸盐转化为过量的游离硫化物需要严格的还原条件。异化硫酸盐还原在自然界中被硫酸盐还原细菌用于呼吸作用,并导致硫酸盐转化为硫化物。然而,这种异化硫酸盐还原途径会受到氧气的抑制,因此仅限于厌氧环境。作为一种替代方法,我们通过代谢工程设计了一种新的有氧硫酸盐还原途径用于硫化物的分泌。同化硫酸盐还原途径被重新定向以过量生产半胱氨酸,过量的半胱氨酸通过半胱氨酸脱硫酶转化为硫化物。作为该途径的一种潜在应用,一种细菌被构建了该途径,并用于在有氧条件下将镉沉淀为硫化镉,硫化镉沉积在细胞表面。为了最大化硫化物的产生和镉的沉淀,对半胱氨酸脱硫酶的产生进行了调节,以实现半胱氨酸产生与降解之间的最佳平衡。

相似文献

1
Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface.
Appl Environ Microbiol. 2000 Oct;66(10):4497-502. doi: 10.1128/AEM.66.10.4497-4502.2000.
3
Analysis of an engineered sulfate reduction pathway and cadmium precipitation on the cell surface.
Biotechnol Bioeng. 2001 Nov 5;75(3):285-91. doi: 10.1002/bit.10030.
5
Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies.
Bioresour Technol. 2008 Nov;99(16):7716-22. doi: 10.1016/j.biortech.2008.01.071. Epub 2008 Mar 20.
6
Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles.
J Basic Microbiol. 2016 May;56(5):520-30. doi: 10.1002/jobm.201500275. Epub 2015 Oct 15.
7
Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli.
Biotechnol Prog. 2009 Sep-Oct;25(5):1260-6. doi: 10.1002/btpr.199.
9
Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum.
J Am Chem Soc. 2002 Oct 16;124(41):12108-9. doi: 10.1021/ja027296o.
10
Precipitation of cadmium by Clostridium thermoaceticum.
Appl Environ Microbiol. 1993 Jan;59(1):7-14. doi: 10.1128/aem.59.1.7-14.1993.

引用本文的文献

1
Metagenomic Analysis of a Continuous-Flow Aerobic Granulation System for Wastewater Treatment.
Microorganisms. 2023 Sep 15;11(9):2328. doi: 10.3390/microorganisms11092328.
2
Calcium-crosslinked alginate-encapsulated bacteria for remediating of cadmium-polluted water and production of CdS nanoparticles.
Appl Microbiol Biotechnol. 2021 Mar;105(5):2171-2179. doi: 10.1007/s00253-021-11155-8. Epub 2021 Feb 9.
4
Cadmium sulphide quantum dots with tunable electronic properties by bacterial precipitation.
RSC Adv. 2016;6(80):76158-76166. doi: 10.1039/C6RA13835G. Epub 2016 Aug 5.
6
The magnetosome model: insights into the mechanisms of bacterial biomineralization.
Front Microbiol. 2013 Nov 26;4:352. doi: 10.3389/fmicb.2013.00352.
7
Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation.
Braz J Microbiol. 2009 Jul;40(3):655-62. doi: 10.1590/S1517-838220090003000030. Epub 2009 Sep 1.
10
Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism.
Appl Environ Microbiol. 2004 Dec;70(12):7404-12. doi: 10.1128/AEM.70.12.7404-7412.2004.

本文引用的文献

1
Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms.
Microbiology (Reading). 1998 May;144(5):1407-1415. doi: 10.1099/00221287-144-5-1407.
3
mRNA stability and plasmid copy number effects on gene expression from an inducible promoter system.
Biotechnol Bioeng. 1998 Sep 20;59(6):666-72. doi: 10.1002/(sici)1097-0290(19980920)59:6<666::aid-bit2>3.0.co;2-d.
4
Cadmium-specific formation of metal sulfide 'Q-particles' by Klebsiella pneumoniae.
Microbiology (Reading). 1997 Aug;143 ( Pt 8):2521-2530. doi: 10.1099/00221287-143-8-2521.
6
Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.
J Bacteriol. 1995 Jul;177(14):4121-30. doi: 10.1128/jb.177.14.4121-4130.1995.
7
9
Culture medium for enterobacteria.
J Bacteriol. 1974 Sep;119(3):736-47. doi: 10.1128/jb.119.3.736-747.1974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验