Suppr超能文献

基因工程大肠杆菌增强硫化镉纳米颗粒的生物合成。

Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli.

机构信息

Food Industry Research and Development Institute, Hsinchu, Taiwan.

出版信息

Biotechnol Prog. 2009 Sep-Oct;25(5):1260-6. doi: 10.1002/btpr.199.

Abstract

Microorganisms can complex and sequester heavy metals, rendering them promising living factories for nanoparticle production. Glutathione (GSH) is pivotal in cadmium sulfide (CdS) nanoparticle formation in yeasts and its synthesis necessitates two enzymes: gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS). Hereby, we constructed two recombinant E. coli ABLE C strains to over-express either gamma-GCS or GS and found that gamma-GCS over-expression resulted in inclusion body formation and impaired cell physiology, whereas GS over-expression yielded abundant soluble proteins and barely impeded cell growth. Upon exposure of the recombinant cells to cadmium chloride and sodium sulfide, GS over-expression augmented GSH synthesis and ameliorated CdS nanoparticles formation. The resultant CdS nanoparticles resembled those from the wild-type cells in size (2-5 nm) and wurtzite structures, yet differed in dispersibility and elemental composition. The maximum particle yield attained in the recombinant E. coli was approximately 2.5 times that attained in the wild-type cells and considerably exceeded that achieved in yeasts. These data implicated the potential of genetic engineering approach to enhancing CdS nanoparticle biosynthesis in bacteria. Additionally, E. coli-based biosynthesis offers a more energy-efficient and eco-friendly method as opposed to chemical processes requiring high temperature and toxic solvents.

摘要

微生物可以将重金属进行复杂的螯合和隔离,使其成为生产纳米颗粒的有前途的活体工厂。谷胱甘肽 (GSH) 在酵母中硫化镉 (CdS) 纳米颗粒的形成中起着关键作用,其合成需要两种酶:γ-谷氨酰半胱氨酸合成酶 (γ-GCS) 和谷胱甘肽合成酶 (GS)。在此,我们构建了两个重组大肠杆菌 ABLE C 菌株,分别过表达 γ-GCS 或 GS,发现 γ-GCS 的过表达导致包涵体形成并损害细胞生理功能,而 GS 的过表达产生了丰富的可溶性蛋白,几乎不影响细胞生长。当重组细胞暴露于氯化镉和硫化钠时,GS 的过表达增强了 GSH 的合成并改善了 CdS 纳米颗粒的形成。所得 CdS 纳米颗粒在尺寸(2-5nm)和纤锌矿结构上与野生型细胞相似,但在分散性和元素组成上有所不同。在重组大肠杆菌中获得的最大颗粒产率约为野生型细胞的 2.5 倍,大大超过了酵母中的产率。这些数据表明,遗传工程方法有可能增强细菌中 CdS 纳米颗粒的生物合成。此外,与需要高温和有毒溶剂的化学工艺相比,基于大肠杆菌的生物合成提供了一种更节能和环保的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验