Hsu F F, Turk J
Mass Spectrometry Resource, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
J Am Soc Mass Spectrom. 2000 Oct;11(10):892-9. doi: 10.1016/S1044-0305(00)00159-8.
A mechanistic study of diacyl glycerophosphoethanolamine fragmentation under low energy collision-activated dissociation with electrospray ionization tandem mass spectrometry is reported. The fragmentation pathways leading to the formation of carboxylate anions (RxCO2-) (x = 1, 2) and the formation of the ions representing neutral loss of ketene ([M - H - Rx'CH=C=O]-) are charge-driven processes, which are governed by the gas-phase basicity and the steric configuration of the molecules. The fragmentation pathway for the formation of the [M - H - RxCO2H]- ions, reflecting neutral loss of fatty acid, is a charge-remote process, which involves the participation of the hydrogens at C-1 and C-2 of the glycerol, resulting in [M - H - R2CO2H]- > [M - H - R1CO2H]-. The preferential formations of R2CO2- > R1CO2-, and of [M - H - R2'CH=C=O]- > [M - H - R1'CH=C=O]- are attributed to the findings that charge-driven processes are sterically more favorable at sn-2. The observation of the abundance of [M - H - Rx'CH=C=O]- > [M - H - RxCO2H]- is attributed to the fact that the [M - H]- ions of GPE are basic precursor ions, which undergo preferential loss of ketene than loss of acid. The major pathway for the formation of RxCO2- ions arises from the nucleophilic attack of the anionic charge site of the phosphate on the C-1 or C-2 of the glycerol to render a charge transfer. The sterically more favorable attack on the C-2 than C-2 of the glycerol results in the abundance of R2CO2- > R1CO2-. These features of tandem spectra readily identify and locate the fatty acid substituents of GPE in the glycerol backbone.
报道了一项关于在电喷雾电离串联质谱的低能量碰撞激活解离条件下二酰基甘油磷酸乙醇胺裂解的机理研究。导致羧酸根阴离子(RxCO2-)(x = 1, 2)形成以及代表乙烯酮中性丢失的离子([M - H - Rx'CH=C=O]-)形成的裂解途径是电荷驱动过程,其受分子的气相碱性和空间构型控制。反映脂肪酸中性丢失的[M - H - RxCO2H]-离子形成的裂解途径是电荷远程过程,这涉及甘油C-1和C-2位氢的参与,导致[M - H - R2CO2H]- > [M - H - R1CO2H]-。R2CO2- > R1CO2-以及[M - H - R2'CH=C=O]- > [M - H - R1'CH=C=O]-的优先形成归因于电荷驱动过程在sn-2位空间上更有利的发现。[M - H - Rx'CH=C=O]- > [M - H - RxCO2H]-丰度的观察结果归因于GPE的[M - H]-离子是碱性前体离子,其优先发生乙烯酮丢失而非酸丢失这一事实。RxCO2-离子形成的主要途径源于磷酸根阴离子电荷位点对甘油C-1或C-2位的亲核攻击,从而实现电荷转移。对甘油C-2位比对C-1位在空间上更有利的攻击导致R2CO2- > R1CO2-的丰度。串联质谱的这些特征能够很容易地识别和定位甘油骨架中GPE的脂肪酸取代基。